
A Principled Approach to
Operating System Construction in Haskell

Thomas Hallgren Mark P Jones
OGI School of Science & Engineering
Oregon Health & Science University

http://www.cse.ogi.edu/~hallgren/
http://www.cse.ogi.edu/~mpj/

Rebekah Leslie Andrew Tolmach
Department of Computer Science

Portland State University
http://www.cs.pdx.edu/~rebekah/

http://www.cs.pdx.edu/~apt/

Abstract
We describe a monadic interface to low-level hardware features that
is a suitable basis for building operating systems in Haskell. The
interface includes primitives for controlling memory management
hardware, user-mode process execution, and low-level device I/O.
The interface enforces memory safety in nearly all circumstances.
Its behavior is specified in part by formal assertions written in a
programming logic called P-Logic. The interface has been imple-
mented on bare IA32 hardware using the Glasgow Haskell Com-
piler (GHC) runtime system. We show how a variety of simple O/S
kernels can be constructed on top of the interface, including a sim-
ple separation kernel and a demonstration system in which the ker-
nel, window system, and all device drivers are written in Haskell.

Categories and Subject DescriptorsD.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; D.4.0 [Operating Systems]: Organization and Design;
D.4.5 [Operating Systems]: Reliability—Verification

General Terms Languages,Design,Verification

Keywords Operating systems, Haskell, hardware interface, mon-
ads, programming logic, verification

1. Introduction
Systems software often contains bugs that cause system failures,
security violations, or degraded performance. One reason for the
high bug rate is that most of this software is written in C or C++,
which lack strong static typing and memory safety. For example,
many security failures are due to buffer over-runs that could have
been avoided simply by using a programming language that en-
forced type safety and bounds checking.

Writing systems software in a relatively low-level implementa-
tion language makes it hard to assure that the software obeys key
specifications. For example, we might wish to verify formally that
an operating system maintains strict data separation between its
processes. If the O/S is written in C, this will be a very challeng-
ing task, because reasoning about the program must be performed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP ’05 September 26-28, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-064-7/05/0009. . . $5.00.

at a very low level. Again, using a programming language with a
cleaner and safer semantics would ease the reasoning task.

Given these goals, Haskell is an attractive language for systems
programming. The core of Haskell is type-safe and memory-safe,
which prevents many classes of bugs, and also pure, which eases
reasoning about program behavior. In addition, Haskell’s highly
expressive type system can be used to capture important program
properties without the need for additional proofs.

Systems software needs to interact directly with machine hard-
ware, which can be accomplished in Haskell by using the built-in
IO monad and the Foreign Function Interface (FFI) extensions. Un-
fortunately, this extended system includes raw pointers and pointer
arithmetic, which allow writes to arbitrary memory locations and
can corrupt the Haskell heap. It also includesunsafePerformIO,
which can be used to manufacture unsafe type casts. Of course, just
as in C, these problems can be addressed by “careful coding,” but
we would like a safer infrastructure instead.

In this paper, we describe the design, implementation, and ap-
plication of a restricted monadic framework that achieves this goal.
The monad provides access to hardware facilities needed to build
an operating system on the Intel IA32 architecture [13], including
virtual memory management, protected execution of arbitrary user
binaries, and (low-level) I/O operations. The interface is memory-
safe in almost all circumstances; the only possible safety violations
are ones that occur via abuse of a device DMA controller. More-
over, unlike the full IO monad, it is small enough that we can enu-
merate useful properties about it as a basis for reasoning about the
behavior of its clients. For example, we can assert that executing
a program in user space has no impact on kernel data structures.
Such properties can be viewed as part of the specification of the in-
terface. We give them as formulas in P-Logic [18], a programming
logic for Haskell that has been developed as part of the Progra-
matica project [22], which is an on-going investigation into using
Haskell for high-assurance development.

We are using this “hardware monad” as the basis for some ex-
perimental operating system kernels that exploit Haskell’s strengths:

• House is a small operating system coded almost entirely in
Haskell. It builds on the previoushOp project conducted by
Sébastien Carlier and Jeremy Bobbio [4]. The system includes
device drivers, a simple window system, a network protocol
stack, and a command shell window in whicha.out files can
be loaded (via TFTP) and executed in user-mode. To our knowl-
edge, this is the first functional-language operating system that
supports execution of arbitrary user binaries (not just programs
written in the functional language itself).

• Osker, currently in development, is a microkernel coded in
Haskell, based on L4 [25], for which we hope to prove some key

security properties, including a strong notion of separation be-
tween multiple domains and/or virtual machines that are hosted
on a single computer. We expect these proofs to be based on a
combination of type-based and ad-hoc reasoning. The hardware
monad properties will be key axioms in the ad-hoc proofs. The
architecture of this kernel makes heavy use of Haskell’s type
classes, especially to describe monad transformers.

We have implemented the hardware monad directly on top of
IA32 hardware. Our implementation uses a modified version of
the Glasgow Haskell Compiler (GHC) runtime system [10], based
on that ofhOp. We retain most services of the runtime system,
including the garbage collector and, optionally, the Concurrent
Haskell multi-threading primitives. In place of the usual file-based
I/O, we provide direct access to the IA32’s I/O ports and memory-
mapped regions, and we add support for direct access to paging
hardware and protection mode switching. In effect, this combines
the runtime system and the operating system in a single entity.

In addition to this real implementation, we have developed a
model implementation of (most of) the hardware monad entirely in
pure Haskell 98. This version is built on an abstract model of mod-
ern CPUs that uses a combination of state and continuation mon-
ads to implement the mechanisms of virtual memory and protected
mode execution [16]. The pure Haskell implementation provides
us with a more formal setting in which to validate the consistency
of the properties that we have specified for the hardware monad.
For example, others in our group are working towards mechanized
proofs for many of these properties using Isabelle, and based on
the semantics of Haskell instead of informal assumptions about any
specific CPU platform. However, we omit further discussion of this
work from the current paper.

Related work The idea of applying functional languages to sys-
tems programming has a long history. Early examples of operating
systems implemented in functional languages include Nebula [17]
and the Kent Applicative Operating System [24, 6].

A more recent project, Hello [9], implements an operating sys-
tem in Standard ML and addresses various language design and
efficiency issues, like how to access hardware devices and how to
handle interrupts in a garbage-collected language. It builds on the
results of the Fox project,where Standard ML was used for systems
programming. In particular, it includes FoxNet, an efficient imple-
mentation of the TCP/IP protocol stack [2]. Compared to these
projects, one new feature of our “hardware monad” is its support
for controlling memory management hardware, which allows us to
run code written in other languages safely.

Functional languages have also been applied when real-time
constraints are an issue. Embedded Gofer [27] has an incremen-
tal garbage collector in addition to other language features needed
to program embedded controllers [28]. We have not seriously ad-
dressed real-time issues in our project yet, but if we do, then we
might find it necessary to switch to a version of GHC that uses an
incremental garbage collector [5].

Our goal of making systems programming safer is shared by
projects using other high-level languages. SPIN [23] takes advan-
tage of the type safety of Modula-3 [3] to ensure safety in an ex-
tensible O/S kernel. Cyclone [14, 7] is a language deliberately de-
signed as a safe replacement for C.

Modern PC hardware is complex, and building an operating
system to control it can be a daunting task. Abstraction layers
that provide reusable, higher-level, simpler and safer interfaces to
the hardware can be useful in many contexts. In this sense, our
“hardware monad” has something in common with OSKit [21],
except that we go a step further by equipping our hardware interface
with formal assertions.We expect this to facilitate formal reasoning
about software built on top of the interface.

The design of appropriate abstraction layers within operating
systems is also currently receiving attention from researchers inter-
ested in virtualizing the underlying processor. A good summary of
this topic can be found in a recent publication by the Xen group [8].

Outline We assume reading knowledge of Haskell throughout.
Section 2 introduces the P-Logic notation used in the remainder
of the paper. Section 3 describes the Hardware (H) monad interface
using type signatures and P-Logic assertions. Section 4 gives the
complete code for a simple demand-paging kernel for single user
processes built on top ofH. Section 5 outlines the features of House
and Section 6 sketches some of the ideas of the Osker kernel.
Section 7 gives some details of the real hardware implementation.
Section 8 concludes.

2. The Programatica Approach and P-Logic
Much of the work described in this paper has been carried out in
the context of the Programatica project, which, at a high-level, is
concerned with general methodologies, tools, and foundations to
support development and certification of secure and reliable soft-
ware systems [22]. As part of this work, we are building Osker, a
new microkernel written in Haskell. We are using Osker as a case
study to evaluate and demonstrate our tools and techniques. At the
same time, to establish the feasibility of building a working operat-
ing system in Haskell, we have been working on the House demon-
stration operating system. Both Osker and House have influenced
the design of the Hardware monad interface.

One of our main goals is to prove that Osker satisfies some key
security properties. With this in mind, we are developing formal
models for Osker and its components, including the Hardware in-
terface. The specification and behavior of the the kernel are cap-
tured by annotating the source code with properties that are written
using an extension of Haskell syntax called P-Logic [18].

In the remainder of this section, we summarize the fragment of
P-Logic that is needed to understand the properties that appear in
later sections.

Well-formed formulas The core syntax of P-Logic uses the sym-
bols /\, \/, ==>, and-/ for conjunction (and), disjunction (or),
implication, and negation, respectively. (Note that-/ was chosen
as an ASCII rendering of the¬ symbol.) Universal quantification
overn variables is written in the formAll v1, . . ., vn.formula.
Existential quantification uses theExist keyword instead ofAll.

Predicates Predicates are written using expressions for the form
P e1 . . . en whereP is a property name ande1 throughen are
program terms. To avoid potential confusion between the prop-
erty and the programming language notations, compound Haskell
terms must be enclosed in braces when they appear inside a P-
Logic formula. For example, the predicateP {x+1} {y+2} asserts
that the values of the expressionsx+1 andy+2 are related by the
propertyP. Braces are not required around simple Haskell expres-
sions such as variables and literals. For example, we might write
All x, y. P x y ==> P y x to specify thatP is symmetric.

Semantic equalities are written using two-place predicates of
the forme1===e2. The syntaxe1=/=e2 is also used as a convenient
shorthand for-/(e1===e2). Note that these are different from the
standard== and /= operators, which can only be used inside a
Haskell term and not directly in a P-Logic formula.

A Haskell expressione of typeBool can be lifted into a P-Logic
formula using a predicate of the formTrue{e}, which asserts that
e will evaluate toTrue. Of course, the HaskellBool type includes
a bottom value,⊥, in addition toFalse andTrue, so the lifting of
an expression to a formula of the logic in this way—and, indeed,
the general treatment of bottom in P-Logic—requires special care
and attention. The details of this can be found elsewhere [18].

Predicates as setsIt is often useful to identify a unary predicate
with the set of values for which it is true. With this in mind, the
syntax of P-Logic allows us to write a predicateP e1 . . . en e
(with n+1 arguments) in the forme ::: P e1 . . . en. For exam-
ple, given a two place predicateMultipleOf n m, which asserts
thatm is a multiple ofn, we might choose instead to write this in
the formm ::: MultipleOf n and to think, at least informally,
of MultipleOf n as a refinement of theInt type that contains
only the multiples ofn. In this way, the triple colon symbol,:::,
is used here in much the same way that the double colon symbol is
used in Haskell expressionse::T to indicate thate has typeT .

P-Logic also provides a comprehension-like nota-
tion, {| x1, . . . , xn | formula |}, for an n-place pred-
icate over the variablesx1 through xn. For example, the
MultipleOf n property mentioned previously can be written as
{| m | Exists k. m==={n*k} |}.

Continuing the view of predicates as sets, P-Logic syntax over-
loads/\ and\/ as intersection and union operators on (partially
applied) predicate expressions. For example, assuming the standard
definitions for arithmetic,MultipleOf 2 /\ MultipleOf 3 is
equivalent toMultipleOf 6.

Defining new properties The Programatica tools allow new prop-
erty names to be introduced by includingproperty definitions in
the source of a Haskell program, each of which takes the form:

property P a1 . . . an = predicateExpression

The variablesa1, . . . , an here represent (optional) arguments toP .
Figures 1 and 2 show several examples that will also be used in later
sections. The properties in Figure 1 describe the usual behavior that
we would expect ofset andget operations in a stateful monad.
The StateGetGet property, for instance, specifies that multiple
reads from the state usingget should return the same value. Note
that theget identifier used here is a placeholder for a predicate
argument, and not a reference to some globally definedget opera-
tor. TheReturns property that appears in Figure 1 specifies that a
monadic computation returns a given value. It is defined as follows:

property Returns x = {| m | m==={m>>return x} |}

Figure 2 defines some independence (or non-interference) prop-
erties. For example,Commute c d specifies thatc andd can be
executed in either order, without a change in behavior.Commute
is used to defineIndependentSetSet set set’, which asserts
that the twoset operators do not interfere with each other (be-
cause, presumably, they operate on distinct components of the state).
The predicatem ::: PostCommute c d specifies the weaker prop-
erty that execution ofc andd will commute if we execute them
command first. We often use quantification overm to express state-
dependent properties. For example, we can specify thatc and d
commute in any state where the monadic computationq would re-
turnTrue, by writing:

property Q =
{| m | {do m; q} ::: Returns {True} |}

assert All m. m ::: Q ==> m ::: PostCommute c d

Finally, as illustrated here, our tools support the use ofassert
declarations to indicate that a particular P-Logic formula should be
true. Declarations like these can be used to record program specifi-
cations and also to capture expectations about program behavior.

3. A Hardware Monad
The raw hardware facilities needed to build an operating system
within Haskell can be compactly and conveniently specified as the
operations of a monad, which we callH (for “Hardware”).H should
be thought of as a specialized version of the usual HaskellIOmonad,

suitable for supporting programs that run in the machine’s privi-
leged (supervisor) mode. Since such programs are usually (though
not necessarily) operating systems, we refer to them throughout this
paper askernels. Themain program of a kernel has typeH().

Like IO, theH monad provides primitives for expressing state-
ful computations and for interacting with the “real world,” but at
a lower level. For example,IO has primitives for allocating, read-
ing, and writing mutable reference cells in the garbage-collected
Haskell heap, whereasH provides only primitives for reading and
writing raw physical memory locations disjoint from the Haskell
heap. Similarly,IO provides stream I/O operations on terminals and
files, whereasH provides operations to read and write the machine’s
programmed I/O ports. Some versions ofIO have support for asyn-
chronous signal and exception handling;H gives direct access to
the machine’s interrupt mechanism.H also provides facilities un-
like any found inIO; in particular, it provides safe access to the
machine’s virtual memory mechanisms, and supports safe execu-
tion of arbitrary machine binaries in user-mode.

Another important characteristic ofH is that it is small: only
a dozen types and about twenty operations. This relatively small
size makes it possible for us to formalize many of its properties
using P-Logic, which would be extremely difficult for the hugeIO
monad (often described as containing “everything but the kitchen
sink.”) We are particularly interested in documentingindependence
properties of the interface.H supports several kinds of memory-like
entities: physical memory for user processes; virtual memory page
maps; programmed I/O ports; and memory-mapped I/O locations.
These kinds of memory are all essentially distinct. For example,
writes to physical memory or to a memory-mapped location do
not normally affect reads from the page maps or I/O ports. Many
of the P-Logic properties that we introduce below are intended
to formalize this intuition. It is difficult to imagine expressing
similar independence properties for the operations of the standard
IO monad.

A key design goal forH is safety. With the exception of certain
I/O operations (as discussed in Section 3.4), no operations inH can
cause corruption of the Haskell heap.

The remainder of this section describes the types and opera-
tors of theH interface in detail. Our description is divided into four
major areas: physical memory access; virtual memory; user-space
process execution; and physical I/O. Much of the interface is es-
sentially machine-independent. When a dependency is exposed, we
will assume that the underlying hardware is an IA32 machine. With
each operator we provide example properties that help specify its
behavior. Note that many of these properties fail in the presence of
implicit concurrency; we discuss this further in Section 3.5.

3.1 Physical Pages and Addresses

The typePAddr represents byte addresses in the machine’s raw
physical memory.

type PAddr = (PhysPage,POffset)
type PhysPage -- instance of Eq, Show
type POffset = Word12

pageSize = 4096 :: Int

It is composed from an abstract typePhysPage, representing a
physical page, and a numericPOffset, representing the offset
of a byte within that page. TypeWord12 behaves analogously to
the standard unsigned integer types (e.g.,Word8); thus, arithmetic
operations are performed modulopageSize.

PhysPages correspond tophysical pagesthat are available for
allocation to user-mode processes. New physical pages are allo-
cated from (a subset of) the raw physical memory that is installed
in the machine using:

property StateGetGet get = {do x<-get; y<-get; return x} === {do x<-get; y<-get; return y}

property StateSetSet set = All x, x’. {do set x; set x’} === {do set x’}

property StateSetGet set get = All x. {do set x; get} ::: Returns x

property Stateful set get = StateGetGet get /\ StateSetSet set /\ StateSetGet set get

Figure 1. Stateful properties forset andget operations.

property Commute c d = {do x<-c; y<-d; return (x,y)} === {do y<-d; x<-c; return (x,y)}

property PostCommute c d = {| m | {do m; x<-c; y<-d; return (x,y)} === {do m; y<-d; x<-c; return (x,y)} |}

property IndependentSetSet set set’ = All x, x’. Commute {set x} {set x’}

property IndependentSetGet set get = All x. Commute {set x} {get}

property Independent set get set’ get’ =
IndependentSetSet set set’ /\ IndependentSetGet set get’ /\ IndependentSetGet set’ get

Figure 2. Non-interference properties forset andget operations.

allocPhysPage :: H (Maybe PhysPage)

A call to allocPhysPage returnsNothing if no more pages are
available. Each allocated page is distinct:

property JustGenerative f =
All m.
{do Just x <- f; m; Just y <- f; return(x==y)}

::: Returns {False}

assert JustGenerative allocPhysPage

There is no explicit mechanism to freePhysPages; this guarantees
that any value of typePhysPage is usable at any point. An imple-
mentation forH may choose to free physical pages implicitly by
using GHC’s weak pointers1 to track when pages are no longer ref-
erenced by the kernel. In addition, a kernel can recycle pages by
maintaining its own free list.

The contents of individual addresses can be read and written
usinggetPAddr andsetPAddr, respectively.

getPAddr :: PAddr -> H Word8
setPAddr :: PAddr -> Word8 -> H ()

By construction, every value of typePAddr is a valid address, so
these functions are total. (We do not attempt to model hardware
failures such as parity errors.) Each physical address acts like an
independent store element with the usual state-like semantics. Us-
ing the auxiliary properties from Figures 1 and 2, we can formalize
this intuition with the following assertion:

assert
All pa, pa’ . pa =/= pa’ ==>

Stateful {setPAddr pa} {getPAddr pa} /\
Independent {setPAddr pa} {getPAddr pa}

{setPAddr pa’} {getPAddr pa’}

3.2 Virtual Memory

The virtual memory facilities in theH monad support writing and
reading ofpage maps, which define the translation ofvirtual ad-

1 A weak pointer to an object is not traced by the garbage collector and
hence does not by itself keep the object alive. It can be tested to see whether
the object is still alive or not.

dressesto physical addresses, with associated access permissions
and history. Execution of user space code is performed in the ad-
dress space defined by a particular page map. Although the raw
hardware supports only onecurrentpage map, theH interface sup-
ports multiple simultaneous page maps, each of which typically
corresponds to a different user process.

VAddr is a concrete type representing virtual addresses.

type VAddr = Word32
minVAddr, maxVAddr :: VAddr
minVAddr = 0x10000000
maxVAddr = 0xffffffff
vaddrRange = (minVAddr,maxVAddr)

It wouldn’t make sense to treat virtual addresses as abstract types,
because user code often references these addresses directly. Not all
32-bit words arevalid virtual addresses, because part of every user
address space (currently the first 256MB) is reserved for the kernel.
The range of valid addresses is given byminVAddr andmaxVAddr,
but, because user code must already be compiled with the range
of valid addresses in mind, these parameters are not very useful to
the kernel, except for sanity checking. They do allow us to define a
validity property:

property ValidVAddr
= {| v | True{inRange vaddrRange v} |}

New page maps, represented by the abstract typePageMap,
are obtained usingallocPageMap. The number of available page
maps may be limited;allocPageMap returns returnsNothing if
no more maps are available.

type PageMap -- instance of Eq, Show
allocPageMap :: H (Maybe PageMap)

Each allocated map is distinct:

assert JustGenerative allocPageMap

As forPhysPages, there is no explicit mechanism to freePageMaps,
but theH implementation may do implicit freeing, and a kernel may
keep a free list.

Page map entries are indexed by valid virtual addresses; all
addresses on the same page share a single entry. The entry for an

unmapped page containsNothing; the entry for a mapped page
contains a value,Just p, wherep is of typePageInfo.

data PageInfo
= PageInfo { physPage::PhysPage,

writable, dirty, accessed::Bool }
deriving (Eq,Show)

Here, thewritable flag indicates whether the user process has
write access to the page. FieldsphysPage andwritable are writ-
ten by the kernel usingsetPage; they are not changed during user-
mode execution. Thedirty andaccessed flags record the history
of page use by the user process. Roughly speaking,dirty indicates
that the page has been written;accessed indicates that it has been
read or written. These fields are typically initialized toFalse by
the kernel usingsetPage, subsequently updated during user pro-
cess execution (in ways we make more precise below), and read
back by the kernel usinggetPage.

setPage
:: PageMap -> VAddr -> Maybe PageInfo ->H ()

getPage
:: PageMap -> VAddr -> H (Maybe PageInfo)

Note thatPageMaps are simple, one-level mappings; the IA32
hardware actually uses a two-level paging scheme, but we choose
to hide this detail underneath theH interface. Page maps are initially
empty, so every valid virtual page address maps toNothing. Each
page map entry behaves like an independent store element.

property OnSamePage va va’ =
{va ‘div‘ (fromIntegral pageSize)}
=== {va’ ‘div‘ (fromIntegral pageSize)}

assert
All pm, pm’, va, va’.
va:::ValidVAddr /\ va’:::ValidVAddr /\
(pm =/= pm’ \/ -/ OnSamePage va va’) ==>
Stateful {setPage pm va} {getPage pm va} /\
Independent {setPage pm va} {getPage pm va}

{setPage pm’ va’}{getPage pm’ va’}

Moreover, page map entries and physical addresses are mutually
independent.

assert All pm, pa, va . va ::: ValidVAddr ==>
Independent {setPage pm va} {getPage pm va}

{setPAddr pa} {getPAddr pa}

3.3 User-space Execution

The operator for executing code in a user address space is

execContext
:: PageMap -> Context -> H (Interrupt,Context)

The Context type describes the state of the processor, including
the values of program-accessible registers and control flags; it es-
sentially plays the role of a continuation. For the IA32:

data Context
= Context { edi,esi,ebp,esp,ebx,

edx,ecx,eax,eip,eflags :: Word32 }

Here,edi, esi, andebx througheax are general-purpose regis-
ters;esp is the stack pointer;ebp is (typically) the frame pointer;
eip is the instruction pointer; andeflags is the control flag regis-
ter (of which only certain bits are accessible to user programs). The
context should really also include the floating point registers and
other user-visible registers associated with IA32 extensions such as
MMX; our current system omits these for simplicity. Similar con-
text structures could be defined for other processor architectures.

InvokingexecContext installs the specified page map and con-
text into the appropriate hardware registers and puts the proces-
sor into user mode. User code then executes (starting at theeip
recorded in theContext) and can access the physical addresses
visible to it through its page map. When user-mode execution is in-
terrupted the processor records the new current context and returns
to supervisor mode;execContext then returns with thatContext
and the nature of theInterrupt. For the IA32, we have

data Interrupt
= I_DivideError | I_NMIInterrupt | ...
| I_GeneralProtection ErrorCode
| I_PageFault PageFaultErrorCode VAddr | ...
| I_ExternalInterrupt IRQ
| I_ProgrammedException Word8

Interrupt constructors (of which only a selection are shown here)
correspond to fault vector addresses, and fall into three classes:

• Processor-detected faults, such asI DivideError andI Page-
Fault; the latter is parameterized by the kind of fault and by the
virtual address where the fault occurred.

• Externally-generated interrupts with an associated IRQ channel
number. For example, timer interrupts generateI External-
Interrupt IRQ0.

• Software exceptions with an associated interrupt number. For
example, executing anINT 0x80 machine instruction, which
is often used to enter system calls, generatesI Programmed-
Exception 0x80.

A similar type could be defined for other processor architectures.
This elegant, continuation-like model for user-space computa-

tions supports simple and efficient kernel designs. For example, in
Section 4, we will outline a simple demand-paging kernel that can
be built using these primitives. In the remainder of this subsection,
we provide some simple assertions that capture essential features of
execContext. Most of these are independence properties. Clearly,
the behavior ofexecContext will be determined by the way that
the page map parameter is configured before the function is called.
To begin, we can characterize all of the programsm that leave physi-
cal addresspa inaccessible in the page mappm using this predicate:

property NotMapped pm pa =
{| m | All va . (va ::: ValidVAddr) ==>

{do m; isMappedTo pm va pa}
::: Returns {False} |}

HereisMappedTo pm va pa is a simple auxiliary Haskell func-
tion (not shown here) that isTrue iff pm provides read access
through the virtual addressva to the page containing physical ad-
dresspa. We can define a similar predicateNotMappedWritableTo
to specify that a physical page is inaccessible for writing.

Now we can give some key properties ofexecContext:

• Changing the contents of an unmapped physical address cannot
affect execution.

assert All pm, pa, c, x, m.
m ::: NotMapped pm pa ==>
m ::: PostCommute {setPAddr pa x}

{execContext pm c}

• Execution can only change the contents of a physical address
that is mapped writable.

assert All pm, pa, c, m.
m ::: NotMappedWritable pm pa ==>
m ::: PostCommute {getPAddr pa}

{execContext pm c}

• Changing one page map does not affect execution under another
page map:

assert All pm, pm’, va, c, x.
pm =/= pm’ /\ va ::: validVAddr ==>
Commute {setPage pm’ va x}

{execContext pm c}

• Executing under a page map does not affect the page mapping
or writable status of any entry in that map and has no effect at
all on any other page map.

assert All pm, va, c. va ::: validVAddr ==>
Commute {getPageField physPage pm va}

{execContext pm c}
assert All pm, va, c. va ::: validVAddr ==>

Commute {getPageField writable pm va}
{execContext pm c}

getPageField field pm va
= liftM (fmap field) (getPage pm va)

assert All pm, pm’, va, c.
pm =/= pm’ /\ va ::: validVAddr ==>
Commute {getPage pm’ va}

{execContext pm c}

• If execution under a page map changes some physical address,
then that map must contain an entry that maps the page as
writable and has its dirty and access flags set.

property Changed pa pm c
= {| m |

{do m; x <- getPAddr pa;
execContext pm c; y <- getPAddr pa;
return (x == y)}

::: Returns {False} |}

property Dirty pa pm c
= {| m | Exist va . va ::: ValidVAddr /\

{do m; execContext pm c; getPage pm va}
::: Returns {Just PageInfo

{ physPage = fst pa,
writable = True,
dirty = True,
accessed = True}} |}

assert All pa, pm, c, m.
m ::: Changed pa pm c
==> m ::: Dirty pa pm c

Note that the last assertion only partially specifies howdirty and
access bits behave; it gives sufficient, but not necessary conditions
for them to be set after execution. In particular, we do not specify
that access bits should be set when a user process reads from a
page. In fact, we have no way to state such an assertion, because
we (deliberately) don’t model the instruction-level behavior of user
processes. Fortunately, the kernel properties we are interested in
proving do not rely on having accurateaccess bit information.

3.4 I/O and Interrupts

The H interface supports the use of IA32 programmed I/O ports,
memory-mapped I/O, and external interrupts delivered by a pro-
grammable interrupt controller. Inevitably, this part of theH inter-
face is highly IA32-specific.

Designing a general-purpose interface to I/O hardware is not
straightforward. To allow flexible programming of drivers for a
wide range of devices, the abstraction level must be fairly low. This,

however, allows interface primitives to be misused. On the other
hand, a more restrictive, higher-level interface would necessarily be
less flexible about what kinds of devices were supported, and lots
of trusted, device-specific code would have to move underneath the
interface. Currently, we have implemented a fairly low-level inter-
face that provides no guarantees about correct usage of I/O devices,
but does enforce memory safety in almost all circumstances. We
may experiment with higher-level interfaces in the future.

Programmed I/O Many PC devices (including timers, the CMOS
and real-time clock devices, the keyboard and mouse, network in-
terfaces, etc.) are controlled by reading and writing data and control
information to specifiedportsvia specialin andout instructions.
These are available throughH via the following functions:

type Port = Word16

inB :: Port -> H Word8
outB :: Port -> Word8 -> H ()
...similar functions forWord16 andWord32...

This interface is very flexible, but also easy to abuse:

• The ports for a device are fixed by the hardware or assigned
dynamically during system start-up, depending on the device
controller’s capabilities. Currently, theH interface makes no
attempt to check that thePort argument is valid in any way
(e.g., that it corresponds to an installed device).

• Device ports can be used to do very disruptive things, some-
times in surprising ways. For example, writing a certain com-
mand word to the keyboard controller can reset the whole com-
puter! TheH interface makes no attempt to check that meaning-
ful control arguments are passed to a given device, much less
that they are constrained to “desirable” behaviors.

• Devices using DMA sometimes specify the address of the in-
memory buffer by writing it to a control port. A rogue kernel
could use this feature to make the device overwrite arbitrary
parts of memory, including the Haskell heap. This is the only
potential hole inH’s memory safety.

Because of these problems, assertions about “well-behavedness”
of H can only be valid modulo an assumption that IO device com-
mands are being used “properly.” In principle, it might be desir-
able to formalize this assumption, and make it an explicit proof
obligation within the P-Logic framework. Unfortunately, any such
formalization will be device-dependent and probably very compli-
cated. In practice, therefore, we believe it is best to treat the as-
sumption informally and implicitly. With this understanding, we
can make some assertions about the independence of the port space
relative to user physical memory, and to page tables, as in the fol-
lowing examples (for the byte versions):

assert All p, pa .
Independent {outB p} {inB p}

{setPAddr pa} {getPAddr pa}

assert All p, pm, va .
va ::: validVAddr ==>
Independent {outB p} {inB p}

{setPage pm va} {getPage pm va}

Note that the ports donot themselves behave like store elements.
For example,outB is not idempotent, andinB will not usually
return a value just written withoutB.

Memory-mapped I/O Some devices make their control and status
registers available at special physical memory locations that can
be read and written using ordinary load and store instructions.
Video cards usually make their frame buffers accessible in the

same way. The physical addresses for this pseudo-memory are
fixed by the device or negotiated by software executed at system
initialization; they can then be mapped to any convenient virtual
memory locations. To make access to these devices safe, memory-
mapped locations must be kept abstract by theH interface, with
access only by special-purposeget andset functions that perform
bounds checks.

type MemRegion
type Offset
setMemB :: MemRegion -> Offset -> Word8 -> H ()
getMemB :: MemRegion -> Offset -> H Word8
validMemB:: MemRegion -> Offset -> Bool
...similar functions forWord16 andWord32...

(ThevalidMem functions can be used to test validity of an offset;
they are primarily used to formulate properties.)

For example, theH interface currently includes primitives for
accessing the frame buffers for a basic text video mode or a VBE-
compliant graphics video mode. Each of these video devices gets
its own buffer, and perhaps additional device-specific information.

textVideoRegion :: H (Maybe MemRegion)
gfxVideoRegion :: H (Maybe FrameBufferInfo)

data FrameBufferInfo
= FBInfo { width, height,

bitsPerPixel :: Int,
frameBuffer :: MemRegion,
maskSizes,
fieldPositions :: (Int,Int,Int)

}

To perform text video output, individual characters (with graphic
attributes) are written usingsetMemW textVideoRegion. To per-
form graphic video output, individual pixels are written using
setMemB (frameBuffer gfxVideoRegion).

Again, we have the expected independence properties with re-
spect to user physical memory and to page tables:

assert All mr, off, pa .
True{validMemB mr off} ==>
Independent {setMemB mr off} {getMemB mr off}

{setPAddr pa} {getPAddr pa}

assert All mr, off, pm, va .
va ::: ValidVAddr /\ True{validMemB mr off} ==>
Independent {setMemB mr off} {getMemB mr off}

{setPage pm va} {getPage pm va}

However, we cannot expect a general property asserting inde-
pendence of memory-mapped and programmed I/O operations, as
many devices support both, with complex, intertwined semantics.

Additional memory-mapped I/O regions can easily be accom-
modated by extending the interface, and DMA buffers could also
be treated in a similar way. The obvious drawback of this scheme,
however, is that the interface must be altered for each new device;
a more generic mechanism would obviously be desirable.

Interrupts Most devices attached to an IA32 signal interrupts
through the programmable interrupt controller, which associates
each interrupt source with an interrupt request channel (IRQ). On
a PC, some IRQs are statically assigned (e.g., IRQ0 corresponds
to the hardware timer, IRQ1 to the keyboard, etc.); others may be
dynamically assigned (e.g., to PCI bus devices).

data IRQ = IRQ0 | IRQ1 | ... | IRQ15
deriving (Bounded, Enum)

Individual IRQs can be enabled or disabled:

enableIRQ, disableIRQ :: IRQ -> H ()

Interrupts can also be globally enabled or disabled, independently
of the per-IRQ settings.

enableInterrupts, disableInterrupts :: H ()

Interrupts are handled in two fundamentally different ways, de-
pending on whether they are received while the the processor is
in user mode or in supervisor mode. Interrupts occurring in user
mode cause a switch back to supervisor mode and an immediate
return fromexecContext with a suitableI ExternalInterrupt
value. The kernel can then handle the exception however it sees fit.
Treatment of interrupts received in supervisor mode is described in
the next section.

3.5 Concurrency

Any realistic kernel must simulate concurrency: kernel code, multi-
ple user processes, and pending interrupt handlers must time-share
the processor2 so that they appear to be running “at the same time.”
We are exploring two basic approaches to achieving this:

• Implicit Concurrency.The kernel uses Concurrent Haskell multi-
threading primitives, as implemented in the GHC library and
RTS. For example, each user process can be set to run in a sep-
arate thread. (This implies thatH primitive operations must be
thread-safe, i.e., any mutable data structure is protected by a
lock.) Interrupts received while in supervisor mode can also be
handled in separate threads (see below). Our House implemen-
tation (Section 5) uses this approach.

• Explicit Concurrency.The kernel simulates concurrency using
queues of continuations (Context values). If interrupts are al-
lowed in supervisor mode, they must be polled for explicitly by
kernel code. Our Osker implementation (Section 6) implements
this approach.

In many Haskell implementations, Haskell code can only be paused
at certain “safe points”—in GHC, for example, at garbage collec-
tion heap-check points. Thus, interrupts occurring in supervisor
mode (while the processor is running Haskell code) cannot be han-
dled immediately. Instead we associate these interrupts with a small
handler (written in C) that just sets a flag to indicate that a particu-
lar IRQ was signaled. In the explicit concurrency model, the kernel
must poll these flags periodically, using a function

pollInterrupts :: H [IRQ]

that returns a list of pending interrupts; it can then invoke appropri-
ate (Haskell) handlers if needed. In the implicit model, this polling
is done by the Concurrent Haskell RTS code at safe points; we ex-
tendH with a function

installHandler :: IRQ -> H() -> H()

that registers a Haskell handler which the RTS is to run (in a
separate thread) if the interrupt flag for the givenIRQ is set.

There are pros and cons to each approach. Using implicit con-
currency allows kernel code to be written without explicit attention
to timing issues; for example, there is no need to bound the execu-
tion time of a pure sub-computation because an interrupt will even-
tually cause a thread switch if necessary. However, under this ap-
proach, many of the state-based assertions given in this section are
not really true because another thread may execute in between two
apparently consecutive operations. The explicit concurrency ap-
proach doesn’t have this problem. Moreover, the explicit approach

2 Of course, multiprocessor systems are truly concurrent; we don’t consider
them in this paper.

is better for kernels that need to manage thread priorities (e.g., to
run interrupt handlers first), because the current GHC implementa-
tion does not permit control over the thread scheduling algorithm.

4. A Simple Executive for User Programs
This section shows how theH monad interface can be used to con-
struct a simple demand-paging kernel for executing IA32 user bi-
naries. Binaries are assumed to have a conventional memory layout
with code, data, heap, and stack regions. To keep the presentation
brief, we allow binaries to use just two system calls:exit andbrk.
Hence, they cannot do I/O (except to return a result value atexit);
to illustrate the use of interrupts and I/O operations, we use an in-
terval timer to track the binary’s execution time and abort it after
a specified number of milliseconds. As a further simplification, the
kernel can run only one binary at a time. More realistic and elabo-
rate kernels are described in Sections 5 and 6.

We describe both static and dynamic characteristics of an exe-
cuting binary using aUProc (user process) record.

data UProc
= UProc { entry :: VAddr,

codeRange, dataRange :: VRange,
startBss, brk :: VAddr,
stackRange :: VRange,
codeBytes, dataBytes :: [Word8],
pmap :: PageMap,
ticks :: Int

}

type VRange = (VAddr, VAddr)

We assume that the kernel is given aUProc with all fields except
pmap andticks already filled in with a static description of the
binary. The fieldcodeRange delimits the program’s code region;
dataRange does the same for the data region. The contents of these
regions are given bycodeBytes anddataBytes; for simplicity we
model these as lists although a real implementation would probably
use unboxed arrays. Theentry field holds the initial instruction
pointer. The stack grows down from the end ofstackRange, the
start of which provides a fixed bottom limit. The bss/heap region
begins atstartBss and grows up tobrk. All theseVAddrs must
be valid in the sense of Section 3.2. Thebrk limit can be arbitrarily
altered by a system call (see below) as long as it remains between
startBss and the start ofstackRange.

There are no restrictions on the nature of user code; it can (try
to) do anything at all! Of course, direct attempts to perform privi-
leged or illegal operations, such as writing to I/O ports or dividing
by zero, will cause a fault that immediately returns control to the
kernel. User code can request a kernel service by making a system
call. To do so, it places the call number (0 forexit, 1 for brk) in
registereax and the argument inebx, and issues anINT 0x80 in-
struction, which causes a software interrupt. This protocol for mak-
ing system calls is normally encapsulated in library procedures.

The entry point for the executive is shown in Figure 3. The pa-
rameters specify that the binary represented byuproc is to be run
for a maximum ofmsecs milliseconds. The executive allocates a
fresh page map (initially empty), and constructs an appropriate ini-
tial Context value. After the timer has been initialized (discussed
further below), theUProc is updated to record the page map and
the number of timer ticks to be allowed before terminating the pro-
gram, and control passes to theexec loop, which is the heart of
the executive (see Figure 4). The loop is parameterized by the cur-
rentuproc andcontext. At each iteration, control is passed to the
user code byexecContext, which returns only when that code’s
execution is interrupted in some way. This may be because of a
system call, page fault, timer interrupt, or unexpected fault of some

runUProc :: UProc -> Int -> H String
runUProc uproc msecs

= do Just pmap <- allocPageMap
initTimer 10 -- interrupt every 10msec
exec uproc{pmap=pmap,ticks=msecs ‘div‘ 10}

context
where

context =
Context {eip=entry uproc,

esp=snd (stackRange uproc)+1,
edi=0,esi=0,ebp=0,ebx=0,
edx=0,ecx=0,eax=0,eflags=0}

Figure 3. runUProc provides the entry point to our executive.

exec :: UProc -> Context -> H String
exec uproc context
= do (interrupt,context’) <-

execContext (pmap uproc) context
case interrupt of

I_ProgrammedException(0x80) ->
--- system call ---
let callnum = eax context’

arg = ebx context’
in case callnum of

0 -> --- exit ---
return("Successful completion "

++ "with result "
++ show arg)

1 -> --- brk ---
...details omitted...

_ -> exec uproc context’{eax=(-1)}

I_PageFault _ faultAddr ->
--- page fault ---
do fixOK <- fixPage uproc faultAddr

if fixOK
then exec uproc context’
else return ("Fatal page fault at "

++showHex faultAddr "")

I_ExternalInterrupt 0x00 ->
--- timer interrupt ---
do let ticks’ = ticks uproc - 1

uproc’ = uproc{ticks=ticks’}
if ticks’ > 0

then exec uproc’ context’
else return ("Time exhausted")

_ ->
return ("Unexpected Fault or Interrupt: "

++ show interrupt)

Figure 4. The heart of a simple demand-paging executive.

kind. After the interrupt is processed, eitherexec is called tail-
recursively to re-enter user code at the point where the interrupt oc-
curred, or execution terminates, returning a suitable text message.

System calls are handled by dispatching on the call number.
The only non-trivial call isbrk, which alters thebrk field in the
uproc; we omit the details here. If an invalid system call number
is requested, the error code -1 is returned (by placing it ineax).

fixPage :: UProc -> VAddr -> H Bool
fixPage uproc vaddr

| inRange (codeRange uproc) vaddr
= do setupPage uproc vbase

(drop offset (codeBytes uproc))
False

return True
where

vbase = pageFloor vaddr
offset =

fromEnum (vbase - fst (codeRange uproc))
fixPage uproc vaddr

| inRange (dataRange uproc) vaddr
= ...similar...

fixPage uproc vaddr
| vaddr >= startBss uproc && vaddr < brk uproc
|| inRange (stackRange uproc) vaddr

= do setupPage uproc vbase (repeat 0) True
return True

where vbase = pageFloor vaddr
fixPage uproc vaddr

| otherwise = return False

setupPage:: UProc -> VAddr -> [Word8] -> Bool ->H()
setupPage uproc vbase src writable

= do page <- newPhysPage
let pi = PageInfo {physPage=page,

writable=writable,
dirty=False,
accessed=False}

setPage (pmap uproc) vbase (Just pi)
zipWithM_ (curry setPAddr page)

[0..pageSize-1]
src

Figure 5. Auxiliary functionsfixPage andsetupPage

When the timer interrupts, the kernel executes a miniature han-
dler which decrements the number of allowed ticks remaining for
the user code, and terminates execution if the tick count is zero.

Page faults are dispatched to auxiliary functionfixPage (see
Figure 5), which returnsTrue iff the missing page has been suc-
cessfully loaded. Note that no pages are mapped at all when ex-
ecution begins; the system relies on page faults to force them in
when needed. In particular, the very first call toexecContext will
always cause a fault on the page containing the initialeip address.

fixPage analyzes the faulting virtual address and attempts to
set up the missing page appropriately according to the region it
belongs to.pageFloor returns the nearest aligned virtual address
below its argument. The contents of code pages are obtained from
codeBytes and they are marked read-only; similarly, data pages
are obtained fromdataBytes and are marked writable. Stack and
heap pages are zeroed. If the fault address is outside any region,
fixPage does nothing and returnsFalse. The auxiliary routine
setupPage is used to obtain a fresh physical page, install it in the
page map, and load its contents with the requested access rights.

Finally, if execContext returns any other kind of interrupt,
user code execution is terminated and an appropriate error message
is returned.

Before the user code runs, it is important to initialize the pro-
grammable interrupt timer; otherwise the kernel may never get con-
trol back. This is done by the call toinitTimer, which writes an
appropriate value to the timer’s control port and enables its inter-
rupt line.

initTimer :: Int -> H ()
initTimer msPerTick

= do -- set timer interrupt frequency...
outB timerPort (ticks .&. 0xff)
-- ... in two steps:
outB timerPort (ticks ‘shiftR‘ 8)
enableIRQ timerIRQ

where
ticks = fromIntegral

(1193190 * msPerTick ‘div‘ 1000)
timerIRQ = IRQ0
timerPort = 0x40 :: Port

5. House: A Working Demonstration System
Having a safe, high-level language like Haskell at our disposal, it is
natural to explore the possibility of using it to build an entire sys-
tem, including kernel, system programs, and applications. Building
on the work of thehOp project and some other existing projects,
we have constructed a prototype for such a system, which we call
House. The system includes the following features, all written in
Haskell and built onH:

• Device drivers, including interrupt handlers, for some useful
PC hardware devices: keyboard, mouse, graphics and a network
card. (The keyboard and text mode video drivers were provided
by hOp.)

• A simple window system, including some demo applications.
(This is the Gadgets system [20], originally implemented in
Component Gofer, and ported by us to Concurrent Haskell.)

• A network protocol stack with basic support for the following
protocols: Ethernet, ARP, IPv4, ICMP, UDP and TFTP.

• A command shell window, where separatea.out binaries can
be loaded via TFTP or by GRUB and run as protected user-
space processes.

• Support for multiple simultaneous user processes and interrupt
handling, using Concurrent Haskell extensions (threads, chan-
nels,MVars)

The system is freely available for download [12].

Networking The largest House component we have developed
ourselves is a simple network protocol stack. We use a uniform
representation of interfaces at each network protocol layer, with
parsing/unparsing combinators to convert between uninterpreted
and structured representations of packets. This may turn out to be
a bad idea from a performance perspective; we don’t yet have any
performance data.

We have implemented a driver for NE2000 compatible network
cards, because this is the card model supported by our development
emulator, QEMU [1]. (At present, we don’t have a physical card
to drive.) The network driver is implemented as a single thread
that handles the communication with both the network device and
the client. We install a simple interrupt handler that just sends a
message to the handler thread when the card has finished receiving
an incoming packet or transmitting an outgoing packet.

The overall structure of our network protocol stack implemen-
tation is fairly conventional. We have aimed to make it easy to add
support for more protocols (e.g., IPv6 and TCP) and link layers
(e.g., PPP).

Graphics and the Gadgets window systemThe Gadgets imple-
mentation [20] relies on a few simple graphics primitives that we
have implemented in Haskell by writing to the linear frame buffer
interface through the VBE [26] interface (see Section 3.4). This
solution is simple, portable and efficient enough for demonstration

purposes. In the future, we might, of course, want to take advantage
of hardware accelerated graphics routines.

6. Towards Osker: Modeling a Separation Kernel
We are also using theH interface as a basis for the implementa-
tion of a kernel called Osker (the “Oregon Separation Kernel”) that
is designed to support concurrent execution of multiple user pro-
cesses with controlled interactions between them. Unlike House,
the implementation of Osker adopts the explicit approach to con-
currency that was described in Section 3.5. Specifically, the ker-
nel maintains Haskell data structures that describe the set of active
processes in the system at any given time, and it uses these to make
scheduling decisions between the available threads. Osker also sup-
ports IPC (interprocess communication), which provides a mecha-
nism for synchronous message passing between threads; its design
is closely based on the well-known L4 microkernel [25].

Our long-term goal is to establish strong guarantees of separa-
tion for Osker by proving, formally, that concurrent processes run-
ning on the same system can only interfere with one another to the
degree permitted by an explicit system security policy. This is work
in progress, but it seems clear that such a proof will depend on the
independence properties ofH described in Section 3.

In the hopes of simplifying the verification effort, we are lever-
aging compile-time type checking in Haskell to ensure that key
system invariants are maintained. We are also using Haskell type
classes and monad transformers to support modular construction
of the kernel and, we hope, to facilitate a correspondingly modu-
lar proof of separation. The specific techniques that we are using
here are similar to those previously applied in the construction of
modular interpreters [15, 19].

The remainder of this section describes some of these aspects of
our current prototype in more detail and show hows theH interface
is used in this context.

Domains and Threads In the terminology of Osker, a system is
organized as a collection ofdomains, each of which has a distinct
user-mode address space that is shared by multiple threads.

type System = [Domain]

data Domain
= Domain { uproc :: UProc,

runnable :: [Thread Runnable],
blocked :: [Thread Blocked] }

The uproc field holds information about the address space and
user code, just as in Section 4. The remaining fields store informa-
tion about threads belonging to the domain:runnable is a queue
of threads waiting to execute (maintained in priority order), and
blocked is a list of threads waiting to send or receive a message.

Every thread has an identifier, an associated scheduling priority,
and details reflecting its currentstate:

data Thread s = Thread { threadId :: ThreadId,
priority :: Int,
state :: s }

The information that we need for a thread that is runnable (i.e.,
awaiting execution in a scheduling queue) is different from the
details that are needed for a thread that is blocked (i.e., waiting
to transfer a message). We reflect this by making the state type a
parameters of Thread, and by instantiating it, as appropriate, to
one of the following types:

data Running = Running
data Runnable = Runnable { ctxt :: Context }
data Blocked = Sending ThreadId Context

| Receiving ThreadId Context

A running thread has no state-specific data, so theRunning type
does not carry any extra information. For a runnable or blocked
thread, the kernel must record the user-space continuation from the
thread’s last execution, represented by aContext. Blocked also
carries information about the pending message transfer, which the
kernel uses to detect when a thread should be unblocked.

Parameterizing theThread types with a state has many useful
consequences. For example, with this approach, the type system
will prevent us from inadvertently scheduling aBlocked thread or
from placing aRunnable thread in theblocked list of a domain.

Tracking Effects At runtime, the kernel and the hardware main-
tain several state components, including, for example, a list of all
the current domains. Some parts of the system, however, do not re-
quire access to all of these components. For example, one system
call might only require access to the virtual memory operations of
H, while another requires access to the state of the running domain,
but nothing else. If we can capture and limit the impact of such
dependencies automatically using types, then we can also hope to
limit the number of side-effects we must reason about in corre-
sponding sections of our proof.

In general terms, for example, the code for handling each of the
system calls in Osker is described by a function of type:

Thread Running -> Context -> Handler ()

The two parameters describe the thread that made the system call
and the associated context. TheHandler type is a monad that is
constructed on top of theH interface, using a state monad trans-
former calledStateT [15, 19].

type Kernel = StateT System H
type Handler = StateT Domain Kernel

The resulting monad includes state components for the domain of
the current thread and for the list of active domains in the system.
For completeness, the following code fragments show some details
of the implementation ofStateT, and also a genericStateMonad
type class that encapsulates the notion of a stateful monad.

newtype StateT s m a = StateT (s -> m (a, s))

instance Monad m => Monad (StateT s m)
where ...

class StateMonad s m where
get :: m s
set :: s -> m ()
update :: (s -> s) -> m ()

instance (Monad m) => StateMonad s (StateT s m)
where ...

Suppose now that we add a simple system call,yield, which
the calling thread can use to yield the remainder of its timeslice.
The implementation ofyield does not modify the list of active
domains or use operations from theH interface; it only modifies
the data structure of the running domain. To capture this, we define
the handler foryield as a function of the following type, without
explicitly mentioning theHandler monad:

(StateMonad Domain m) =>
Thread Running -> Context -> m ()

This type uses a predicate(StateMonad Domain m) to specify a
constraint on the choice of the monadm (specifically, that it must
have a state component of typeDomain). We can also see that the
implementation ofyield does not require any features from theH
interface because there is no mention ofH in its type.

As a second example, consider the implementation of aspawn
system call that takes a start address and an identifier for a new
thread in the current domain as parameters. In this case, the handler
has type:

(HMonad m, StateMonad Domain m) =>
VAddr -> ThreadId ->

Thread Running -> Context -> m ()

The implementation ofspawn requires operations from theH inter-
face to allocate thread-local space for the new thread. This is re-
flected in the type by the use of theHMonad class, which is a wrap-
per that provides access to all of the operations ofH and allows them
to be lifted implicitly and automatically through arbitrary layers of
monad transformers.

class Monad h => HMonad h where
allocPhysPage :: h (Maybe PhysPage)
getPAddr :: PAddr -> h Word8
setPAddr :: PAddr -> Word8 -> h ()
...

instance HMonad H where ...
instance HMonad m => HMonad (StateT s m)

where ...

Note that the declaration of theHMonad class includes a signature
for each of the operations in theH interface, but replaces each use
of theH type constructor with the type variableh. The two instance
declarations describe how these functions are implemented forH
(by binding the overloaded names to the non-overloaded primitives
introduced earlier) and for transformed versions of the monad like
Kernel andHandler (by applying suitable liftings).

Although we have omitted some details, these examples illus-
trate the use of type classes and monads to provide a form of effects
analysis that can capture dependencies explicitly in inferred types.

Scheduling and Exception Handling Osker implements round-
robin scheduling for domains and priority-based scheduling for
threads. The domain scheduler selects a domain to run from the
list of active domains and passes it to the thread scheduler, called
tScheduler, which selects the thread to be run.

tScheduler :: (HMonad m, StateMonad System m)
=> Domain -> m ()

tScheduler dom
= case runnable dom of

[] -> return ()
(t:ts) -> do dom’ <-

execThread (uproc dom) t
‘runStateTs‘ dom{runnable=ts}

update (insertDomain dom’)

If the queue is empty, the domain is finished or deadlocked, and
is not rescheduled. Otherwise, the thread at the head of the queue
is selected and executed usingexecThread. The runStateTs
operator used here is part of the library that definesStateT:

runStateTs :: Monad m
=> StateT s m a -> s -> m s

runStateTs (StateT c) s = do (a,s’) <- c s
return s’

In this specific case,runStateTs is used to embed anexecThread
computation from theHandler monad into a computation in the
Kernel monad by passing in an additionalDomain parameter. The
thread scheduler uses theupdate call to insert the modified version
of the current domain back into the list of active domains. At this
point, tScheduler returns to the domain scheduler, which will
loop back to execute a thread from the next active domain.

The execThread function replaces the execution loop,exec,
of the kernel in Section 4. Notice how the type ofexecThread
ensures that we can only executeRunnable threads.

execThread :: (HMonad m, StateMonad Domain m,
StateMonad System m)

=> UProc -> Thread Runnable -> m ()
execThread u t

= do (intr, ctxt’) <-
execContext (pmap u) (ctxt (state t))

handle t{state=Running} ctxt’ intr

This definition uses theexecContext function from the H inter-
face to run the continuation stored in thectxt field in the state of
threadt. The result is anInterrupt value and a modifiedContext.
To service the interrupt, we change the thread state toRunning and
call the functionhandle. This works in a similar way to thecase
expression in the definition ofexec (Figure 4) and passes control
to our system call handlers where necessary.

7. Implementing the Hardware Monad
We have implemented theH interface directly on top of real IA32
hardware. The implementation consists of about fifteen small mod-
ules, amounting to about 1200 lines of Haskell, supported by about
250 lines ofC code (with a few lines of embedded assembler) ac-
cessed via the Foreign Function Interface (FFI). An additional 500
lines of C and 150 lines of assembler were added to version 6.2
of the standard Glasgow Haskell Compiler (GHC) runtime system
(RTS) to support booting on a bare machine and to set up paging.
Our current implementation can safely be used with Concurrent
Haskell threads, which are specific to GHC; in particular, we use
QSems to protect critical sections. Except for this, our Haskell code
could probably be ported to a different, FFI-compliant Haskell 98
implementation without too much difficulty.

The lower levels of our implementation are based heavily on
the hOp Haskell microkernel [4].hOp can be viewed as a port of
the GHC RTS to a bare IA32-based PC. The standard RTS start-up
code is extended to initialize the bare machine. The remainder of
the RTS is scrubbed to remove any dependencies on an underlying
operating system. The standard C library is replaced by a minimal
version that suffices to support compiled Haskell code and output
to the text-mode display. There is a small library of device drivers
written in Haskell, using the IO monad and FFI facilities to access
the hardware (this is straightforward since the entire system runs
in privileged mode). The drivers make heavy use of GHC’s Con-
current Haskell thread mechanism for intra-kernel communication
and for interrupt handling. A simple Haskellmain program exer-
cises the drivers. All the Haskell code, including relevant parts of
the Haskell standard library, is compiled and linked by GHC in the
ordinary way. The resulting microkernel is then converted to a boot
image that can be loaded and started by the GRUB boot loader [11].

To implementH, we have modified and extended thehOp work
by adding support for virtual memory and user-mode process ex-
ecution in a protected address space. We have also implemented a
simpler and more flexible approach to interrupt handling, reduced
the dependence of the system on Concurrent Haskell threads, and
added support for memory-mapped I/O (e.g., for graphics/video).
The remainder of this section gives some details of these features.

Physical Memory Figure 6 shows a typical physical memory
layout, assuming (for simplicity) a total installed memory size
of 64MB. The C stack and heap are used by the code in the
GHC RTS, our initialization code, and in the foreign functions
called as part of ourH implementation. The kernel (main program)
executable image contains all compiled Haskell code, the GHC
RTS, and our C and assembler extensions. (Although 7MB is set

C Stack

0

Video RAM
and BIOS

640KB

Kernel + GHC RTS

1MB

Kernel page
tables

8MB

C heap

8MB+64KB

Haskell Heap

12MB

User process pdirs/ptables
and physical pages

32MB 64MB

Graphics
frame buffer

0xf0000000 0xf02fffff 4GB

Figure 6. Physical Memory Layout (not to scale!)

aside for this image, our current implementations use much less;
for example, the complete House system described in Section 5
occupies less than 3MB.) The Haskell heap is used to store Haskell
data structures in the usual way; it is managed by the standard GHC
garbage collector. Kernel page tables describe the page mapping
used by kernel code; this is incorporated as part of every user-mode
page map too (see below). User page directories, page tables, and
physical pages holding code and data are allocated out of a single
large memory pool.

In addition to the regions we allocate, certain regions of phys-
ical address space are associated with specific devices to support
memory-mapped I/O. The low-memory region at 640KB contains
a text video buffer and BIOS RAM on all PC’s. The graphics frame
buffer in high memory is shown as an example: a typical system
will have one or more such buffers at device-specific addresses.
Recall that both buffers are exported via theH interface.

Virtual Memory Page Maps The IA32 supports a fairly straight-
forward two-level paging scheme. (It also has a separate, mostly or-
thogonal memory protection scheme based onsegments; like most
modern operating systems, we ignore segments almost entirely.)
A page tablecontains entries mapping individual virtual pages to
physical pages. Apage directorymaps contiguous ranges of virtual
pages to page tables. Crucially, both page tables and (especially)
page directories can be sparsely populated: a zero entry means the
corresponding virtual addresses are unmapped. TheH interface’s
PageMap corresponds to a page directory and its subsidiary page
tables. Virtual-to-physical translation is performed using thecur-
rent directory, which is pointed to by processor control register
CR3. Page directories for user processes are installed intoCR3 by
theexecContext routine.

All the virtual address spaces have the same general layout. As-
suming the 64MB memory size shown in Figure 6, the first 64MB
of virtual addresses are mapped directly to identical physical ad-
dresses, and marked as accessible only to supervisor mode; i.e.,
user-mode processes cannot see them. Any memory-mapped I/O
regions living at high physical memory addresses (e.g. the graphics
frame buffer) are mapped to virtual addresses immediately above
64MB, again marked for supervisor-only access. Virtual addresses
starting at 256MB (0x100000000) are mapped for access by user
processes according to calls made tosetPageMap. This scheme
permits kernel code to access all physical memory (and any memory-
mapped I/O regions) regardless of which page directory is current,
so there is no need to switch back to a special page map when re-
turning from user to supervisor mode. It is efficient to implement
because page tables can be shared between multiple page directo-
ries; in this case, we arrange for every page directory to map the
supervisor-accessible addresses to thesameset of page tables.

FunctionallocPageMap simply grabs a page from the user-
process page pool, zeroes it, and returns a pointer to it. Function
setPageMap is a bit more complicated because it must take ac-
count of the two-level page map structure. If the virtual address
being mapped lives in a range that is already mapped to a page ta-
ble, then the corresponding entry in that table is written. If there
is no appropriate page table, a fresh page must be taken from the
pool, initialized, and entered in the page directory first. User page
tables are never shared, as this would expose the two-level structure
above theH interface. Changes to a page map will normally become

visible the next time the page directory is set intoCR3. However,
if the target page directory ofsetPageMap is already installed in
CR3, the function issues ainvlpg instruction to invalidate (just)
the changed mapping in the TLB.

The H interface deliberately lacks functions for freeingPage-
Maps; instead, we use GHC’s weak pointers to detect when aPage-
Map is no longer referenced by the kernel. The page directory and
all its subsidiary page tables can then be returned to the pool.
(However, care must be takennot to free a page directory that is still
installed inCR3!) Individual page tables are also reclaimed when
they no longer contain any mappings. Similar techniques are used
to allocatePhysPages from the user-process page pool, and to free
them automatically when they are no longer referenced.

Executing Code in User SpaceEach call toexecContext causes
a transfer from supervisor to user mode and (eventually) back again.
Implementing these mode transfers is an arcane affair; we give
only a high-level description here. To transfer control to user mode,
execContext begins by copying the fields of theContext record
parameter into a C-levelcontext structure(whose layout is dictated
by the hardware) and settingCR3 to point to the specified page di-
rectory (if different from the current one). It then saves its stack
pointer in memory, setsesp to point to the context structure, and
executes a return-from-interrupt (rti) instruction, which loads the
user process state from the context structure and jumps to theeip
recorded in that context. Control returns to the kernel when the user
process is interrupted by a hardware fault, an external hardware in-
terrupt, or a software exception instruction; all these cause the hard-
ware to dump the current process state into the context structure
and transfer control to a C exception handler. This handler copies
the context structure to a new HaskellContext record, restores the
saved stack pointer from memory, and returns fromexecContext.

I/O Implementation Because most of the I/O facilities in the
H interface are relatively low-level, their implementation is quite
simple. For example, the various functions to read and write I/O
ports are implemented as single IA32 instructions.

As noted in Section 3.5, special processing is needed if an inter-
rupt occurs while the processor is in supervisor mode. Ifinstall-
Handler has been used to specify a (Haskell) handler for the rele-
vant IRQ, we must arrange for this handler to be run as soon as pos-
sible. To achieve this, we make use of an existing GHC RTS mech-
anism for delivering signals. The RTS maintains a queue of signal
handlers to be activated (in fresh Concurrent Haskell threads) the
next time that the garbage collector gains control because a heap
limit check has failed. Our C handler simply inserts the registered
Haskell interrupt handler into this queue. If no Haskell handler is
registered, the C handler just sets an IRQ-specific flag that can be
read bypollInterrupts.

Memory-mapped I/O regions and DMA buffer regions must be
allocated as part of the system initialization process. For example,
our current implementation uses information obtained from the
BIOS via the GRUB boot loader to determine the physical memory
address frame buffer, which it then remaps to a convenient virtual
address and exposes (along with other graphics device information)
through theH interface.

8. Conclusion and Future Work
We have successfully designed and implemented a monadic inter-
face to the low-level hardware features of the IA32 architecture,
and used it to build preliminary versions of a new, all-Haskell op-
erating system (House) and also of an L4-compatible microkernel
(Osker). This paper has focused on the challenges of building a
real implementation of the interface. As another part of our ongo-
ing research, we are also building formal models of the interface.
These two threads of work will eventually come together as we
build a validated Osker system. But even now, at an early stage in
our project, they are already having significant influence on each
another. The long term goal of formal validation has encouraged us
to think carefully about the interfaces that we build. This had led
us to consider, not just the types and the operations that should be
provided, but also the properties that we expect or require them to
satisfy. We have used P-Logic assertions of these properties to give
a rich and precise definition of the interface.

Although we believe our current set of assertions to be both
valid and useful, it is likely to be expanded and refined as we con-
tinue work on both sides of theH interface. Completing the formal
model of H will allow us to verify the consistency of assertions
and will suggest new ones. As we continue to develop Osker code,
we will also be building proofs of key properties such as separa-
tion; this process will undoubtedly lead to further refinement ofH’s
properties as well.

Our experience using Haskell as a systems implementation lan-
guage has been largely positive so far. We have found its type sys-
tem and support for monads to be especially useful. The speed of
compiled code has proved adequate for the purposes of the House
system. However, key issues about performance remain to be an-
swered. In particular, we have not yet determined whether devices
requiring high bandwidth and low latency (e.g., network cards)
can be adequately serviced in a Haskell runtime environment—
particularly in the presence of garbage collection.

Haskell’s type-based separation between pure and effectful com-
putations is useful for documenting function interfaces, and we ex-
pect it to be helpful in simplifying proofs. Otherwise, there is no
particular reason why this work could not be done in a different
functional language. We have made no essential use of laziness in
our code, so an eager language such as ML might seem a more
natural choice. On the other hand, laziness does not appear to be
costing us much in terms of time or space performance. A more
compelling advantage of ML, especially for the specification work
reported in this paper, may be that it supports proper module inter-
faces in the form of signatures.

Because our ultimate goal is high-assurance systems software,
we need to be able to validate every component of our system,
including the compiler and runtime system. We currently rely on
the GHC compiler and RTS, which are large and complex, making
such validation challenging. BecauseH (if used without implicit
concurrency) makes no essential use of GHC-specific features, we
expect to be able to port to a much simpler RTS (e.g., one providing
just garbage collection). We are actively investigating mechanisms
for building high-assurance collectors.

Acknowledgments
Sébastien Carlier and Jeremy Bobbio implemented hOp, which
was one of our main inspirations. The code for Gadgets is due
to Rob Noble. Iavor Diatchki wrote the NE2000 Ethernet and
mouse drivers, and made many other helpful contributions. Other
members of the Programatica team and the anonymous reviewers
made useful suggestions about the presentation of this paper.

References
[1] F. Bellard. QEMU.http://fabrice.bellard.free.fr/qemu/.
[2] E. Biagioni, R. Harper, and P. Lee. A Network Protocol Stack in

Standard ML.Higher Order Symbol. Comput., 14(4):309–356, 2001.
[3] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow,

and G. Nelson. Modula-3: Language definition.http://www.
research.compaq.com/SRC/m3defn/html/complete.html.

[4] S. Carlier and J. Bobbio. hOp.http://www.macs.hw.ac.uk/
~sebc/hOp/, 2004.

[5] A. Cheadle, T. Field, S. Marlow, S. Peyton Jones, and L. While.
Exploring the Barrier to Entry: Incremental Generational Garbage
Collection for Haskell. InInt. Symp. on Memory Management, pages
163–174, 2004.

[6] J. Cupitt. A brief walk thourgh KAOS. Techical Report 58,
Computing Laboratory, Univ. of Kent at Canterbury, February 1989.

[7] Cyclone.http://www.research.att.com/projects/cyclone/.
[8] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and

M. Williamson. Safe hardware access with the Xen virtual machine
monitor. InProc. OASIS ASPLOS Workshop, 2004.

[9] G. Fu. Design and implementation of an operating system in Standard
ML. Master’s thesis, University of Hawaii, August 1999.

[10] Glasgow haskell compiler.http://www.haskell.org/ghc.
[11] Grub. http://www.gnu.org/software/grub/.
[12] T. Hallgren. The House web page.http://www.cse.ogi.edu/

~hallgren/House/, 2004.
[13] Intel Corp. IA-32 Intel Architecture Software Developer’s Manual

Volume 3: System Programming Guide, 2004.
[14] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang.

Cyclone: A Safe Dialect of C. InUSENIX Annual Technical
Conference, pages 275–288, June 2002.

[15] M. P. Jones. Functional programming with overloading and higher-
order polymorphism. InAdvanced Functional Programming, 1st Int.
Spring School on Advanced Functional Programming Techniques-
Tutorial Text, pages 97–136, London, UK, 1995. Springer-Verlag.

[16] M. P. Jones. Bare Metal: A Programatica model of hardware. In
High Confidence Software and Systems Conference, Baltimore, MD,
March 2005.

[17] K. Karlsson. Nebula: A functional operating system. Technical
report, Programing Methodology Group, University of Göteborg and
Chalmers University of Technology, 1981.

[18] R. B. Kieburtz. P-logic: Property verification for Haskell programs.
ftp://ftp.cse.ogi.edu/pub/pacsoft/papers/Plogic.pdf,
August 2002.

[19] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular
interpreters. InPOPL ’95: Proc. 22nd ACM Symp. on Principles of
programming languages, pages 333–343, 1995.

[20] R. Noble.Lazy Functional Components for Graphical User Interface.
PhD thesis, University of York, November 1995.

[21] The OSKit Project.http://www.cs.utah.edu/flux/oskit/.
[22] The Programatica Project home page.www.cse.ogi.edu/PacSoft/

projects/programatica/, 2002.
[23] The SPIN project.http://www.cs.washington.edu/research/

projects/spin/www/, 1997.
[24] W. Stoye. Message-based functional operating systems.Science of

Computer Programming, 6:291–311, 1986.
[25] L. Team.L4 eXperimental Kernel Reference Manual, January 2005.
[26] Video Electronics Standards Association.VESA BIOS EXTENSION

(VBE) – Core Functions Standard, Version: 3.0, September 1998.
www.vesa.org.

[27] M. Wallace.Functional Programming and Embedded Systems. PhD
thesis, Dept of Computer Science, Univ. of York, UK, January 1995.

[28] M. Wallace and C. Runciman. Lambdas in the Liftshaft – Functional
Programming and an Embedded Architecture. InFPCA ’95: Proc.
7th Int. Conf. on Functional Programming Languages and Computer
Architecture, pages 249–258, 1995.

