This module defines the represenation of types, qualified types, type schemes, substitution and various auxiliary types.
module TiTypes(module TiTypes,HsTypeI(..),HsIdentI(..),Kind) where import Syntax(HsTypeI(..),TI(..),HsIdentI(..),HsFunDeps, hsTyFun,hsTyApp,hsTyTuple,hsTyCon,hsTyVar, kstar,base,mapTI,accT) import List(nub,(\\)) import Maybe(fromMaybe) import MUtils(collectByFst) --import TiEnv(Env,range) import TiKinds(Kind) import TiNames import Debug.Trace(trace) -- for debugging type Type i = HsTypeI i type Pred i = Type i data Qual i t = [Pred i] :=> t deriving (Eq,Show,Read) type QType i = Qual i (Type i) data Scheme v = Forall [Kinded v] [Kinded v] (QType v) deriving (Eq,Show,Read) -- Eq?? unQual t = []:=>t forall' = Forall [] mono t = forall' [] (unQual t) --uscheme qt = fakeForall (tv qt) qt -- temporary hack!!! -- where fakeForall vs qt = Forall (map (:>:kstar) vs) qt -- temporary hack!!! --upscheme t = uscheme (unQual t) -- temporary hack!!! kuscheme ks qt = forall' (kinded ks (tv qt)) qt kupscheme ks t = kuscheme ks (unQual t) funT ts = foldr1 hsTyFun ts -- :: Type appT ts = foldl1 hsTyApp ts -- :: Type tupleT ts = hsTyTuple ts -- :: Type tyvar v = hsTyVar v -- :: Tyvar -> Type ty (HsVar v) = tyvar v ty (HsCon c) = hsTyCon c -- :: Type isVarT (Typ (HsTyVar v)) = Just v isVarT _ = Nothing isFunT (Typ (HsTyFun t1 t2)) = Just (t1,t2) isFunT _ = Nothing flatAppT t = flat t [] where flat (Typ (HsTyApp t1 t2)) ts = flat t1 (t2:ts) flat t ts = (t,ts) flatConAppT ty = case flatAppT ty of (Typ (HsTyCon c),ts) -> Just (HsCon c,ts) _ -> Nothing --instName (SrcLoc f l c) = HsVar (Qual (Module "i") (show l++"_"++show c)) --dictName n = HsVar (Qual (Module "d") n) :: QId --vvar = unqual :: String->VarId infix 1 :>: data Typing x t = x :>: t deriving (Eq,Show,Read) type Assump i = Typing (HsIdentI i) (Scheme i) type Typed i x = Typing x (Type i) emap f (e :>: t) = f e:>:t tdom xts = [x|x:>:_<-xts] unzipTyped :: [Typing x t] -> Typing [x] [t] unzipTyped ets = uncurry (:>:) $ unzip [(e,t)|e:>:t<-ets] zipTyped :: Typing [x] [t] -> [Typing x t] zipTyped (xs:>:ts) = zipWith (:>:) xs ts --collectTyped :: Ord x => [Typing x t] -> [Typing x [t]] collectTyped xts = map (uncurry (:>:)) $ collectByFst [(x,t)|x:>:t<-xts] type Kinded x = Typing x Kind kinded1 ks v = v:>:head' [k|HsVar v':>:k<-ks,v'==v] -- not very efficient... where head' [] = trace ("Bug in TiTypes.kinded1: missing kind info for "++show v) kstar head' (k:_) = k kinded ks = map (kinded1 ks) --type KAssump = Typing Id Kind type KInfo i = [Typing (HsIdentI i) (TypeInfo i)] data TypeInfo i = Data | Newtype | Class [Pred i] -- superclasses [Kinded i] -- parameters (HsFunDeps Int) -- fun deps (0-based parameter positions) [Assump i] -- methods | Synonym [i] (Type i) | Tyvar deriving ({-Eq,-}Show,Read) newtype Subst i = S [(i,Type i)] deriving (Show) idS = S [] infix 5 +-> v+-> t = S [(v,t)] extS v t s = compS (v+->t) s compS s1@(S s1') s2 = S (s1'++s2') where S s2' = apply s1 s2 domS (S s) = map fst s varSubst s@(S s') v = fromMaybe (tyvar v) (lookup v s') applySubst s@(S s') ty@(Typ t) = case t of HsTyVar v -> fromMaybe ty (lookup v s') _ -> base $ mapTI id (applySubst s) t class TypeVar v => Types v t | t->v where tmap :: (Type v->Type v) -> t -> t apply :: Subst v -> t -> t tv :: t -> Set v apply = tmap . applySubst type Set a = [a] occurs v t = v `elem` tv t instance Types v t => Types v [t] where tmap = map . tmap tv = nub . concatMap tv instance TypeVar v => Types v (Subst v) where tmap f (S s') = S [(v,tmap f t)|(v,t)<-s'] -- hmm tv (S s') = tv (map snd s') -- hmm instance (Types v t1,Types v t2) => Types v (t1,t2) where tmap f (t1,t2) = (tmap f t1,tmap f t2) tv (t1,t2) = nub (tv t1++tv t2) instance (Types v t1,Types v t2,Types v t3) => Types v (t1,t2,t3) where tmap f (t1,t2,t3) = (tmap f t1,tmap f t2,tmap f t3) tv (t1,t2,t3) = nub (tv t1++tv t2++tv t3) instance Types v t => Types v (Typing x t) where tmap f (x:>:t) = x:>:tmap f t tv (x:>:t) = tv t instance Functor (Typing x) where fmap f (x:>:t) = x:>:f t -- hmm instance TypeVar v => Types v (Type v) where tmap = id tv (Typ t) = case t of HsTyVar v -> [v] HsTyForall vs ps t -> tv (ps,t) \\ vs _ -> nub $ accT ((++) . tv) t [] instance TypeVar v => Types v (Scheme v) where apply s (Forall ags gs qt) = Forall ags gs (apply (restrict s (tdom (ags++gs))) qt) tmap f (Forall ags gs qt) = Forall ags gs (tmap f qt) -- hmm tv (Forall ags gs qt) = tv qt \\ tdom (ags++gs) restrict (S s) gs = S [s1|s1@(v,_)<-s,v `notElem` gs] instance Types v t => Types v (Qual v t) where tmap f (ps:=>t) = tmap f ps:=>tmap f t tv (ps:=>t) = tv (ps,t) {- instance Types v info => Types v (Env key info) where tmap = fmap . tmap tv = tv . range -}