module IsabelleProp where import IsabelleTerm import IsabelleType import Mixfix type TypedId = (String, Maybe Type) data Prop = PropTrue {- truth value -} | PropFalse {- truth value -} | PropVar String {- Propositional variable -} | PropHas [PredArg] Pred {- Predicate membership -} | PropEqual Term Term {- equality assertion -} | PropConj Prop Prop {- propositional conjunct -} | PropDisj Prop Prop {- propositional disjunct -} | PropImpl Prop Prop {- implication chain -} | PropEquiv Prop Prop {- equivalence -} | PropNeg Prop {- negation -} | PropForall [TypedId] Prop {- universal quantification -} | PropExists [TypedId] Prop {- existential quantification -} -- maybe should add type field to quantifiers data PropDecl = PropDecl String Prop {- prop. declaration -} data Pred = PredStrong Pred' | PredWeak Pred' data Pred' {- PredConst : String -> Pred -} {- predicate constant -} = PredUniv | PredUndef | PredArrow Pred Pred {- arrow predicate -} | PredLfp String Pred {- least fixed-point predicate -} | PredGfp String Pred {- greatest fixed-point predicate-} | PredVar String {- predicate variable -} | PredLifted Term {- lifted section predicate -} | PredNeg Pred {- negated predicate -} | PredTuple [Pred] {- tuple predicate -} | PredLit Integer {- literal predicate -} | PredCong String [PredArg] {- constructor congruence pred. -} | PredComp [Pattern] Prop {- set comprehension -} | PredDisj Pred Pred {- pred. disjunction -} | PredConj Pred Pred {- pred. conjunction -} | PredImpl Pred Pred {- pred. implication chain -} | PredEquiv Pred Pred {- pred. equivalence -} -- shouldn't PredEquiv return Prop? or is this pointwise equivalence? data PredArg = TermArg Term | PredArg Pred data PredPat = PredAbs String [String] {- pred. abstraction -} {- data Param = TermParam String | PredParam String -} data PredDecl = PredDecl PredPat Pred {- pred. declaration -} ------------------------------------------------------------ propForall x (PropForall xs u) = PropForall (x:xs) u propForall x u = PropForall [x] u propExists x (PropExists xs u) = PropExists (x:xs) u propExists x u = PropExists [x] u --signature sorts Pred PredPat PredFormula PredDecl ------------------------------------------------------------ instance Show Prop where showsPrec p x = case x of PropTrue -> showString "PropTrue" PropFalse -> showString "PropFalse" PropVar x -> showString x PropHas [x] a -> mixfix "_ \\<in> _" [showsPrec 50 x, showsPrec 51 a] 50 p PropHas xs a -> mixfix "_ \\<in> _" [showTuple (map shows xs), showsPrec 51 a] 50 p PropEqual u v -> showHBrackets (shows u . showString " = " . shows v) PropConj u v -> mixfix "_ \\<conj> _" [showsPrec 36 u, showsPrec 35 v] 35 p PropDisj u v -> mixfix "_ \\<or> _" [showsPrec 31 u, showsPrec 30 v] 30 p PropImpl u v -> mixfix "_ \\<longrightarrow> _" [showsPrec 26 u, showsPrec 25 v] 25 p PropEquiv u v -> mixfix "_ = _" [showsPrec 50 u, showsPrec 51 v] 50 p PropNeg u -> mixfix "\\<not> _" [showsPrec 40 u] 40 p PropForall xs u -> mixfix "\\<forall>_. _" [showTypedIds xs, showsPrec 10 u] 10 p PropExists xs u -> mixfix "\\<exists>_. _" [showTypedIds xs, showsPrec 10 u] 10 p where showTypedId p (x, Nothing) = showString x showTypedId p (x, Just t) = mixfix "_::_" [showString x, shows t] 0 p showTypedIds (x:[]) = showTypedId 0 x showTypedIds (x:xs) = mixfix "_ _" [showTypedId 1 x, showTypedIds xs] 0 0 instance Show Pred where showsPrec p x = case x of PredStrong a -> mixfix "strong _" [showsPrec 1000 a] 999 p PredWeak a -> mixfix "weak _" [showsPrec 1000 a] 999 p instance Show Pred' where showsPrec p x = case x of PredUniv -> showString "UNIV" PredUndef -> showString "{UU}" PredArrow a b -> mixfix "arrow _ _" [showsPrec 1000 a, showsPrec 1000 b] 999 p PredLfp x a -> mixfix "lfp (%_. _)" [showString x, shows a] 999 p PredGfp x a -> mixfix "gfp (%_. _)" [showString x, shows a] 999 p PredVar x -> showString x PredLifted x -> mixfix "lifted _" [showsPrec 1000 x] 999 p PredNeg a -> mixfix "- _" [showsPrec 81 a] 80 p PredTuple as -> showTuple (map shows as) PredLit n -> showBraces (shows (HInt n)) PredCong c [] -> showBraces (showString c) PredCong c xs -> mixfix "cong_ _ _" [shows (length xs), showString c, showSpaceSep (map showCongArg xs)] 999 p PredComp [x] a -> mixfix "{_. _}" [shows x, shows a] 1000 p PredComp xs a -> mixfix "{_. _}" [showTuple (map shows xs), shows a] 1000 p PredDisj a b -> mixfix "_ Un _" [showsPrec 65 a, showsPrec 66 b] 65 p PredConj a b -> mixfix "_ Int _" [showsPrec 70 a, showsPrec 71 b] 70 p PredImpl a b -> mixfix "- _ Un _" [showsPrec 81 a, showsPrec 71 b] 65 p PredEquiv a b -> mixfix "_ <=> _" [showsPrec 50 a, showsPrec 51 b] 50 p instance Show PredArg where showsPrec p x = case x of TermArg t -> showsPrec p t PredArg a -> showsPrec p a showCongArg x = case x of TermArg t -> showBraces (shows t) PredArg a -> showsPrec 1000 a instance Show PredPat where showsPrec p (PredAbs f xs) = case xs of [] -> showString f _ -> mixfix "_ _" [showString f, showSpaceSep (map showString xs)] 999 p {- instance Show Param where showsPrec p x = case x of TermParam s -> showString s PredParam s -> showString s -} instance Show PredDecl where showsPrec p (PredDecl (lhs@(PredAbs x _)) rhs) = mixfix "constdefs\n _ :: \"\\_\"\n \"_ == _\"\n" [showString x, showsPrec 3 lhs, showsPrec 2 rhs] 2 p instance Show PropDecl where showsPrec p (PropDecl lhs rhs) = mixfix "\nlocale _ = assumes\n \"_\"\n" [showString lhs, shows rhs] 0 0 {- mixfix "constdefs\n _ :: bool\n \"_ == _\"\n" [showString lhs, showString lhs, showsPrec 2 rhs] 2 p -}