module HsPropMaps where import HsPropStruct import HsIdent import AccList import MUtils import Products((><)) --- Maps ----------------------------------------------------------------------- mapPD :: (i1->i2) -> (pa1->pa2) -> (pp1->pp2) -> PD i1 pa1 pp1 -> PD i2 pa2 pp2 mapPD idf paf ppf pd = case pd of HsPropDecl s n ns p ->HsPropDecl s (idf n) (map (mapHsIdent idf) ns) (ppf p) HsAssertion s optn a->HsAssertion s (idf # optn) (paf a) mapPP idf = mapPP2 idf idf mapPP2 :: (i1->i2)->(i1->i2)->(e1->e2)->(p1->p2) ->(t1->t2)->(pa1->pa2)->(pp1->pp2) -> PP i1 e1 p1 t1 pa1 pp1 -> PP i2 e2 p2 t2 pa2 pp2 mapPP2 vf cf ef pf tf paf m pp = case pp of -- PredId i -> PredId (cf i) PredApp i ts ps -> PredApp (cf i) (map tf ts) (map (mapEither ef m) ps) PredArrow p1 p2 -> PredArrow (m p1) (m p2) PredInfixApp p1 i p2 -> PredInfixApp (m p1) (cf i) (m p2) PredNeg optt p -> PredNeg (tf # optt) (m p) PredOp op optt p1 p2 -> PredOp op (tf # optt) (m p1) (m p2) PredLfp i optt p -> PredLfp (cf i) (tf # optt) (m p) PredGfp i optt p -> PredGfp (cf i) (tf # optt) (m p) PredNil -> PredNil PredLifted e -> PredLifted (ef e) PredStrong p -> PredStrong (m p) PredParen p -> PredParen (m p) PredComp pts a -> PredComp (map (pf><fmap tf) pts) (paf a) PredAbs is p -> PredAbs (map (mapHsIdent2 vf cf) is) (m p) mapPA idf = mapPA2 idf idf mapPA2 :: (i1->i2)->(i1->i2)->(e1->e2)->(t1->t2)->(pa1->pa2)->(pp1->pp2) -> PA i1 e1 t1 pa1 pp1 -> PA i2 e2 t2 pa2 pp2 mapPA2 vf cf ef tf m ppf pa = case pa of Quant q i optt pa -> Quant q (vf i) (tf # optt) (m pa) -- PropId i -> PropId (cf i) PropApp i ts ps -> PropApp (cf i) (map tf ts) (map (mapEither ef ppf) ps) PropNeg a -> PropNeg (m a) PropOp op a1 a2 -> PropOp op (m a1) (m a2) PropEqual e1 e2 -> PropEqual (ef e1) (ef e2) PropHas e p -> PropHas (ef e) (ppf p) PropParen a -> PropParen (m a) -- PropLambda i a -> PropLambda (vf i) (m a) -- PropLet i optt e a -> PropLet (vf i) (tf # optt) (ef e) (m a) --- Accumulators --------------------------------------------------------------- type Acc i b = i->b->b accPD :: Acc i b->Acc pa b->Acc pp b->Acc (PD i pa pp) b accPD idf paf ppf pd = case pd of HsPropDecl s n ns p -> idf n . accList (accHsIdent idf) ns . ppf p HsAssertion s optn a -> maybe id idf optn . paf a accPP :: Acc i b->Acc e b->Acc p b->Acc t b->Acc pa b->Acc pp b->Acc (PP i e p t pa pp) b accPP idf ef pf tf paf ppf pp = case pp of -- PredId i -> idf i PredApp i ts as -> idf i . accList tf ts . accList (either ef ppf) as PredArrow pp1 pp2 -> ppf pp1 . ppf pp2 PredInfixApp pp1 i pp2 -> ppf pp1 . idf i . ppf pp2 PredNeg optt p -> maybe id tf optt . ppf p PredOp op optt p1 p2 -> maybe id tf optt . ppf p1 . ppf p2 PredLfp i optt pp -> idf i . maybe id tf optt . ppf pp PredGfp i optt pp -> idf i . maybe id tf optt . ppf pp PredNil -> id PredLifted e -> ef e PredStrong pp -> ppf pp PredComp pts pa -> accList accComp pts . paf pa PredAbs is pp -> accList ( accHsIdent idf) is . ppf pp PredParen pp -> ppf pp where accComp (p,optt) = pf p . maybe id tf optt accPA :: Acc i b->Acc e b->Acc t b->Acc pa b->Acc pp b->Acc (PA i e t pa pp) b accPA idf ef tf paf ppf pa = case pa of Quant q i optt pa -> idf i . maybe id tf optt . paf pa -- PropId i -> idf i PropApp i ts es -> idf i . accList tf ts . accList (either ef ppf) es PropNeg a -> paf a PropOp op a1 a2 -> paf a1 . paf a2 PropEqual e1 e2 -> ef e1 . ef e2 PropHas e p -> ef e . ppf p PropParen a -> paf a -- PropLambda i a -> idf i . paf a -- PropLet i optt e a -> idf i . maybe id tf optt . ef e . paf a --- Sequencers ----------------------------------------------------------------- seqPD :: (Functor m,Monad m) => PD (m i) (m pa) (m pp) -> m (PD i pa pp) seqPD pd = case pd of HsPropDecl s n ns p -> HsPropDecl s # n <# mapM seqHsIdent ns <# p HsAssertion s optn a -> HsAssertion s # seqMaybe optn <# a seqPP :: (Functor m,Monad m) => PP (m i) (m e) (m p) (m t) (m pa) (m pp) -> m (PP i e p t pa pp) seqPP pp = case pp of -- PredId i -> PredId # i PredApp i ts ps -> PredApp # i <# sequence ts <# mapM seqEither ps PredArrow p1 p2 -> PredArrow # p1 <# p2 PredInfixApp p1 i p2 -> PredInfixApp # p1 <# i <# p2 PredNeg optt p -> PredNeg # seqMaybe optt <# p PredOp op optt p1 p2 -> PredOp op # seqMaybe optt <# p1 <# p2 PredLfp i optt p -> PredLfp # i <# seqMaybe optt <# p PredGfp i optt p -> PredGfp # i <# seqMaybe optt <# p PredNil -> return PredNil PredLifted e -> PredLifted # e PredStrong p -> PredStrong # p PredParen p -> PredParen # p PredComp pts a -> PredComp # mapM spts pts <# a where spts (mp,optmt) = (,) # mp <# seqMaybe optmt PredAbs is p -> PredAbs # mapM seqHsIdent is <# p seqPA :: (Functor m,Monad m) => PA (m i) (m e) (m t) (m pa) (m pp) -> m (PA i e t pa pp) seqPA pa = case pa of Quant q i optt pa -> Quant q # i <# seqMaybe optt <# pa -- PropId i -> PropId # i PropApp i ts ps -> PropApp # i <# sequence ts <# mapM seqEither ps PropNeg a -> PropNeg # a PropOp op a1 a2 -> PropOp op # a1 <# a2 PropEqual e1 e2 -> PropEqual # e1 <# e2 PropHas e p -> PropHas # e <# p PropParen a -> PropParen # a -- PropLambda i a -> PropLambda # i <# a -- PropLet i optt e a -> PropLet # i <# seqMaybe optt <# e <# a