The various auxiliary operations required by the extensible type checker are defined here.
module TiPropInstances where import List(partition) import Maybe(isJust) --import Maybe(mapMaybe) import HasBaseStruct import PropSyntax import TI hiding (Subst,Qual(..)) --import TiD(DeclInfo(..),HasMethodSigs(..)) --import TiHsName --import TiBaseStruct(pApp) import TiBase() --import TiPrelude(pt) import HsPropStruct import MUtils import DefinedNamesProp() import FreeNamesProp() import Substitute import SubstituteProp instance HasId i (HsExpI i) where ident = base . ident isId = isId @@ basestruct --instance HasLit (HsExpI i) where lit = hsLit loc0 ----instance HasLit (HsPatI i) where lit = hsPLit instance HasCoreSyntax i (HsExpI i) where app e1 e2 = hsApp e1 e2 tuple = hsTuple list = hsList instance HasAbstr i (HsExpI i) where abstract = hsLambda . map var {- instance HasId i (HsPatI i) where ident = base . ident isId = isId @@ basestruct instance HasCoreSyntax i (HsPatI i) where app (Pat (Base p1)) p2 = base $ pApp p1 p2 -- hmm tuple = hsPTuple list = hsPList -} instance HasAbstr i (HsDeclI i) where abstract is = mapRec (mapProp (abstract is) id) -- !! instance HasAbstr i pa => HasAbstr i (PD i pa pp) where abstract is pd = case pd of HsAssertion s optn pa -> HsAssertion s optn (abstract is pa) HsPropDecl s n ns pp -> HsPropDecl s n (map HsVar is++ns) pp --instance HasAbstr i (AssertionI i) where -- abstract is pa = foldr propLambda pa is instance Eq i => HasLocalDef i (HsExpI i) (HsDeclI i) where letvar xt e = mapRec (mapProp (letvar xt e) id) -- !! instance (FreeNames i pa,MapExp e pa,HasAbstr i pa, HasLocalDef i e pa, FreeNames i pp,MapExp e pp, HasId i e,Subst i e) => HasLocalDef i e (PD i pa pp) where letvar xt@(i:>:t) e pd = case pd of HsPropDecl s n ns pp -> if HsVar i `elem` freeVars pp then if isJust (isId e) then HsPropDecl s n ns (esubst1 var e i pp) else --pd -- hmm!! HsPropDecl s n ns (esubst1 var e i pp) --code duplication... else pd HsAssertion s optn pa -> if HsVar i `elem` freeVars pa then if isJust (isId e) then HsAssertion s optn (esubst1 var e i pa) else HsAssertion s optn (letvar xt e pa) else pd instance AddDeclsType i [HsDeclI i] instance HasDef [HsDeclI i] (HsDeclI i) where nullDef = null noDef = [] consDef = (:) appendDef = (++) toDefs = id filterDefs = filter instance (ValueId i,TypeVar i) => DeclInfo i (HsDeclI i) where explicitlyTyped kenv tinfo ctx = recprop (explicitlyTyped kenv tinfo ctx) (explicitlyTyped kenv tinfo ctx) --isTypeDecl = isBase isTypeDecl . struct isUnrestricted expl = recprop (isUnrestricted expl) (isUnrestricted expl) keepAmbigTypes = recprop keepAmbigTypes keepAmbigTypes instance DeclInfo i (PD i pa pp) where explicitlyTyped _ _ _ pd = case pd of --HsAssertion s (Just n) pa -> ([],[HsCon n:>:mono (pt "Prop")]) _ -> ([],[]) -- no explitit type info here... isUnrestricted _ _ = True keepAmbigTypes pd = case pd of HsAssertion {} -> True _ -> False --- Dummy instances --- -- Need something sensible when decorating the syntax tree with types... instance TypeVar i => Types i (HsDeclI i) where tmap f = id; tv d = [] instance TypeVar i => Types i (AssertionI i) where tmap f = id; tv d = [] instance TypeVar i => Types i (PredicateI i) where tmap f = id; tv d = [] instance HasTypeApp i (HsExpI i) where spec x _ ts = ident x --instance HasTypeApp i (HsPatI i) where spec x _ ts = ident x instance HasTypeAnnot i (HsExpI i) instance HasMethodSigs [HsDeclI i] where splitMethodSigs = partition isSig where isSig (Dec (Base (HsTypeSig {}))) = True --isSig (Dec (Prop (HsAssertion _ (Just _) _))) = True isSig _ = False {- instance GetSigs i [Pred i] (Type i) [HsDeclI i] where getSigs = mapMaybe getSig where getSig (Dec (Base (HsTypeSig s is c tp))) = Just (s,is,c,tp) getSig _ = Nothing -}