
An Overview of the Programatica Toolset

Thomas Hallgren James Hook Mark P. Jones
Richard B. Kieburtz

OGI School of Science & Engineering
Oregon Health & Science University

20000 NW Walker Rd, Beaverton, Oregon, USA

http://www.cse.ogi.edu/PacSoft/projects/programatica/

1 Introduction

With ever increasing use of computers in safety and security critical applications,
the need for trustworthy computer systems has never been greater. But how can
such trust be established? For example, how can we be sure that our computer
systems will not destroy or corrupt valuable data, compromise privacy, or trigger
serious failures that could, in the worst cases, lead to loss of life?

Industry and academia have attacked this problem in many different ways,
demonstrating concretely that the use of techniques such as systematic design
processes, rigorous testing, or formal methods can each contribute significantly
to increased reliability, security, and trustworthiness. There are obviously some
significant differences between these techniques, but there is also a unifying fea-
ture: each one results in some tangible form of evidence that provides a basis
for trust. Examples of such evidence include a record of the meeting where a
code review was conducted, the set of test cases to which an application was
subjected, or a formal proof that establishes the validity of a critical property.

Unfortunately, the diversity, volume, and variability of evidence that is needed
in practice, even in the development of some fairly small systems, makes it
hard to manage, maintain, and exploit this evidence as a project evolves and as
meaningful levels of assurance are required. Without support, practical difficul-
ties like these could easily discourage or prevent system builders from capturing
and leveraging evidence to produce systems in which they, and their users, can
develop a well-placed trust.

In the Programatica project at OGI [24], we are exploring the role that tools
can play in facilitating and supporting effective use of evidence during the de-
sign, development and maintenance of complex software systems. From a pro-
grammer’s perspective, Programatica provides a development environment for

1



an extended version of the functional programming language Haskell [16] that
provides a notation (and an associated logic, called P-logic [17]) for express-
ing properties of Haskell code. From a verification perspective, we expect that
a broad spectrum of techniques will be useful in establishing such properties,
including code review, testing, and formal methods. To support evidence man-
agement, Programatica provides: mechanisms for capturing different forms of
evidence in certificates; methods exploiting fine-grained dependency analysis to
automate the tasks of tracking, maintaining, and reestablishing evidence as a
system evolves; and tools to help users understand, manage, and guide further
development and validation efforts. One way to understand Programatica is as
a framework for Extreme Formal Methods: we expect property assertions to be
developed and established in parallel with the code that they document, just as
test cases are developed in extreme programming [2].

This paper describes the current version of the Programatica tools and illus-
trates how they address some of the above goals in practice. The tools, while
still a work in progress, can already manipulate Haskell programs in various
ways and have some support for evidence management. In Section 2, we de-
scribe some of the features that the tools provide to support program develop-
ment in Haskell, including facilities for browsing, slicing, and generating coding
metrics. Section 3 describes functionality that is more directly targeted at the
needs of evidence management. Programatica is designed to provide an open
architecture for interfacing with external tools, and we illustrate this by de-
scribing two different ‘server’ components. The first, described in Section 3.1,
connects Programatica programs and property assertions to Alfa, a proof edi-
tor for structured type theory. The second, described in Section 3.2, provides
a corresponding connection between Programatica and Plover, an automatic
verification engine for P-logic. Notes on the implementation are provided in
Section 4.

2 Program Development Tools

2.1 Basic Command-line Tools

The functionality of our tools is available through a simple command line inter-
face. Many different tasks can be performed by passing appropriate arguments
to a program called pfe (the “Programatica Front-End”). Some of the func-
tionality of pfe is also available through a graphical interface (Section 2.3).

The tools operate on a project, which is simply a collection of files containing
Haskell source code. The command pfe new creates a new project, while pfe
add adds files and pfe remove removes files from a project. There is also a
command pfe chase to search for source files containing needed modules. This
is the only command that assumes a relationship between module names and
file names. A wrapper script pfesetup uses pfe new and pfe chase to create

2



a project in a way that mimics how you would compile a program with ghc
--make [9] or load it in Hugs [13].

Like batch compilers, pfe caches various information in files between runs (e.g.,
type information). pfe also caches the module dependency graph, while other
systems parse source files to rediscover it every time they are run. This allows
pfe to detect if something has changed in a fraction of a second, even for projects
that contain hundreds of modules.

Once a project has been set up, the user can use pfe for various types of queries.
For example, pfe iface M displays the interface of module M , pfe find x
lists modules that export something called x and pfe uses M.x lists all places
that use the entity called x that is defined in Module M .

2.2 The HTML Renderer

The command pfe webpages generates web pages for a project, with one page
per module. Every identifier in the generated HTML code is linked to its defini-
tion. Extensive tagging is used and a reference to a style sheet is made, allowing
the user to customize the look of the resulting web pages. An example is show
in Figure 1.

While the syntax highlighting provided by editors such as Emacs and Vim is
based on a simple lexical analysis, our tool also makes use of syntax analysis
to distinguish between type constructors and data constructors. Also, for hy-
perlinking identifiers to their definition, a full implementation of the module
system and the scoping rules of Haskell are used. Although the source code is
parsed, the HTML code is not generated by pretty-printing the abstract syntax
tree, but by decorating the output from the first pass of our lexical analyzer
[11], preserving layout and comments.

We also support a simple markup language for use in comments, keeping the
plain ASCII presentation of source text readable, while, at the same time, mak-
ing it possible to generate nice looking LATEX and HTML from it. We used this
system, for example, to prepare our paper on the Haskell Module System [8].

Our HTML renderer is a tool for documenting and presenting source code, in
contrast to Haddock [18], which is a tool for producing user documentation for
libraries.

2.3 The Haskell Source Code Browser

While HTML rendering makes it possible to use a standard web browser to
browse Haskell programs, we have also implemented a dedicated Haskell browser
(Figure 2). It assumes that a project has already been set up with pfe, and is
started with the command pfebrowser. It provides a syntax highlighted and
hyperlinked source view similar to the one provided in the HTML rendering, but

3



Figure 1: A sample Haskell module rendered as HTML by the Programatica
Tools.

it also has some additional functionality. For example, the user can click on an
identifier to find out what its type is. The browser can reload and retypecheck
a module after it has been edited. Information is cached internally to make this
quick. Currently, reloading and retypechecking a moderately sized module (a
few hundred lines or so), takes just a second or two.

At present, the tools type check complete modules, and do not provide any type
information type checking fails. In the future, we might make the type checker
more incremental, providing partial information in the presence of type errors.
Other possible features for future development include turning the browser into
a Haskell editor, and creating a dedicated proof tool for Haskell, perhaps similar
to the Sparkle proof tool [7] for Clean.

4



Figure 2: The Programatica Haskell Browser. The user has clicked on a use of
apply to confirm that it applies a substitution to a list of predicates.

2.4 Program Slicing

Viewing a program as a set of definitions, the slicer computes, given an identifier,
the subset of the definitions that are referenced, directly or indirectly, from that
identifier. For example, by slicing with Main.main as the starting point, you
can remove dead code from a program. This functionality is provided by the
command pfe slice M.x. The output is a set of valid Haskell modules that,
for example, can be loaded in Hugs. (It will not be a complete Haskell program
if slicing starts from something other than Main.main.)

Slicing is driven by a dependency analysis on type-checked code, allowing unused
instance declarations to be eliminated. However, to keep the slicer simple, top-
level declarations are treated as atomic units and this can make the slicing
coarse, for example including definitions of default methods (and everything
they depend on) in class declarations, even if they are not needed in any instance.

The slicer preserves the module structure of the source program. Import and
export declarations are adjusted appropriately.

5



Because of the annoying monomorphism restriction, eliminating a definition that
is not used can change the meaning of a declaration that is used. Dependencies
caused by this side effect are currently not taken into account by our slicer.

2.5 Software Metrics

The pfe program provides commands for calculating an ad-hoc selection of
software metrics:

• sizemetrics: number of lines of source text per module (includes com-
ments and blank lines)

• locmetrics: number of lines of code per module (excludes comments and
blank lines)

• importmetrics: number of imports per module

• exportmetrics: number of exports (importers) per module

• classmetrics: number of instances per class

Support for other forms of metrics might be added in the future.

3 Evidence Management

At the moment, the command line tools and the browser support the creation
and validation of certificates for the following basic forms of evidence:

• informal claims (“I say so”),

• random testing with QuickCheck [5],

• formal proof in Alfa [10], and

• automated proof with the dedicated P-logic verifier Plover.

There is work in progress on support for other forms of evidence, and our imple-
mentation has an extensible architecture to make it easy to plug them in using
certificate servers to act as bridges between our code and external tools.

When source code is changed, the validity of existing certificates can be af-
fected. Revalidating certificates might require some work by the user. To help
identify those changes that can actually influence the validity of a certificate,
dependencies are tracked on the definition level (rather than the module level).
Changes are detected by comparing hash values computed from the abstract
syntax. As a result, we avoid false alarms triggered by changes to irrelevant

6



parts of a module, or by changes that only affect comments or the layout of
code.

One of the main tasks of a certificate server is to translate P-logic property
assertions and the corresponding parts of the program that they refer to into
the language/notation of an external tool. (Slicing, as described in Section 2.4,
is particularly useful here because it can help to reduce the amount of code that
must be translated.) The following sections describe how this is accomplished
in building servers for Alfa (Section 3.1) and Plover (Section 3.2).

3.1 Structured Type Theory in Alfa

The translation to Structured Type Theory [6] allows asserted properties to be
proved formally in the proof editor Alfa [10]. The translation is based on type
checked code. Polymorphic functions are turned into functions with explicit
type parameters and overloading is handled by the usual dictionary translation,
turning class declarations into record type declarations and instance declarations
into record value definitions.

The syntax of Structured Type Theory is simpler than that of Haskell, so a
number of simplifying program transformations are performed as part of the
translation. This affects, for example, list comprehensions, the do-notation,
pattern matching, derived instances and literals. There are also various ad-hoc
transformations to work around syntactic restrictions and limitations of the type
checker used in Alfa. Apart from this, the translated code looks fairly similar
to the original Haskell code.

While Haskell has separate name spaces for types/classes, values and modules,
Structured Type Theory has only one, so some name mangling is required to
avoid name clashes. This is done in a context-independent way, so that when
some Haskell code is modified, the translation of unmodified parts remains un-
changed, allowing proofs about unmodified parts to be reused unchanged.

While type theory formally only deals with total functions over finite data struc-
tures, the translator allows any Haskell program to be translated. Alfa contains
a syntactic termination checker [1] that can verify that a set of structurally re-
cursive function definitions are total. When the translation falls outside that
set, any correctness proofs constructed in Alfa entail only partial correctness,
and we leave it to the user to judge the value of such proofs. In the future, we
might use a more sophisticated termination checker and/or change the trans-
lation to use domain predicates [3] to make partiality explicit and to make the
user responsible for providing termination proofs.

While the type system of plain Haskell 98 can be mapped in a straight-forward
way to the predicative type system of Structured Type Theory, we foresee prob-
lems extending the translation to cover existential quantification in data types
and perhaps also higher rank polymorphism.

7



-- Synchronous stream processors

module SPS where

newtype S i o = S (i->(o,S i o))

feed (S sps) i = sps i

runS _ [] = []

runS sps (i:is) = continue (feed sps i) is

continue c is = fst c:runS (snd c) is

(>*<) :: S i1 o1 -> S i2 o2 -> S (i1,i2) (o1,o2)

sps1 >*< sps2 = S sps

where

sps (i1,i2) = ((fst o1,fst o2),snd o1>*<snd o2)

where o1 = feed sps1 i1

o2 = feed sps2 i2

assert Separation1 = {-#cert:Separation1#-}

All sps1 . All sps2 . All is1 . All is2 .

{runS (sps1>*<sps2) (zip is1 is2)} === {zip (runS sps1 is1) (runS sps2 is2)}

Figure 3: The Haskell module SPS, defining synchronous stream processors and
asserting a separation property.

3.1.1 Example: Using the Alfa Certificate Server

In this section we illustrate the practical details involved in creating evidence
for an asserted property using the Programatica tools with the Alfa certificate
server in their current state.

The source code in this example is a Haskell module SPS (see Figure 3), defining
synchronous stream processors and asserting a simple separation property for
parallel composition of synchronous stream processors. (c.f., [24])

The first step in applying the Programatica tools is to set up a project using
pfesetup:

pfesetup SPS.hs

Next, we can start pfebrowser and take a look at the Haskell code for module
SPS, noting in particular the following definitions,

• S i o: the synchronous stream processor type

• runS: the function that applies a stream processor to an input stream to
produce an output stream, S i o → [i] → [o].

• >*<: Parallel composition of stream processors, S i1 o1 → S i2 o2 →
S (i1, i2) (o1, o2)

8



• Separation1: The asserted separation property, for which we want to create
an Alfa certificate.

The source also includes a certificate annotation {-#cert:Separation1#-} next
to the assertion, telling pfebrowser to display a certificate icon there. The icon
displayed initially is a sad smiley, indicating that pfebrowser did not find a
certificate of the name given in the certificate annotation.

Our next step is to create an Alfa certificate by clicking on the assertion name
(Separation1), then on the link Create a new certificate that appears in the
status display below the source display in pfebrowser. Pfebrowser then opens
a window where the type, name and conclusion of the new certificate can be
entered:

We obtain a new, unvalidated certificate, and the sad smiley icon next to the
assertion changed accordingly. Clicking on that icon opens the certificate info
window shown in Figure 4. This window includes a link to validate the certifi-
cate. Validating the certificate might seem pointless at this point, considering
that we haven’t created a proof yet. It is still the best way to proceed, because
it will have the effect of translating the Haskell code to Alfa and creating a
template proof file where we can put our proof.

The Alfa translation is put in the subdirectory alfa/ and the proof template
file created is called SPSProofs.alfa. (The Alfa certificate server currently
suggests one proof file per Haskell module. The user can provide alternative file
names, if desired.)

We should now proceed to edit the proof in the proof file, and eventually end up
with a complete proof of the asserted property (Figure 5). We should also run

9



Figure 4: Information window for a newly-created certificate. The icon in the
background indicates a certificate for Alfa, but the question mark highlights the
fact that the certificate is not yet valid.

Figure 5: Using Alfa to construct a proof of Separation1.

10



the termination checker in Alfa to verify that the proof was defined by structural
induction rather than some meaningless circular construction. With a complete
proof, we can rerun the validation command and find that it now succeeds and
that the certificate icon is changed accordingly.

This certificate will remain valid so long as the user does not modify the defini-
tion of the property or of the functions on which it depends. If if there are any
changes, however, it may be possible to revalidate the certificate automatically
by rerunning the proof in SPSProofs.alfa.

3.2 Plover—a P-logic Verifier

Plover is an automatic verification server for Programatica. Given a Haskell pro-
gram embedding one or more assertions expressed formally in P-logic, Plover
attempts to find a proof of a designated assertion using (1) proof rules of the
logic, (2) a few simple decision procedures for systems of equalities and linear
inequalities, (3) a set of reduction rules for Haskell, and (4) strategies for apply-
ing these rules and decision procedures to sequent formulas in order to discharge
proof obligations. Plover conducts its proof search without user interaction and
it reports only its success or its failure; it does not construct a proof tree.

Plover implements P-logic directly. It does not depend upon a translation of
Haskell into a simpler functional language nor does it translate formulas of P-
logic into more primitive formulas. Nothing is “lost in translation.”

The motivation to develop an automatic verification server lies in the boring na-
ture of verification proofs. Unlike proofs of interesting mathematical theorems,
many of which are based upon deep insights into the underlying mathemati-
cal structures, and which, once done, become the subject of continued study
and improvement, verification proofs tend to be based upon shallow theories
of superficially complex structures. Such proofs may not require deep insight,
although they are often highly detailed. A verification proof itself is rarely the
subject of ongoing study and improvement; it is the program whose properties
are to be verified that is the object of primary interest. And in consequence, as
a program evolves over time, the verification task is never completely finished.
Proofs of a program’s properties are inevitably made obsolete by its evolution
and must be redone. Each of these considerations argues strongly for some
degree of automation of verification proofs.

Of course, Plover, like any automated procedure that searches for proofs in a
Turing-complete theory, is incomplete—its failure to find a proof does not mean

11



that an assertion is false or even that it is unprovable. It only indicates that the
strategies employed by Plover were insufficient to find a proof. In the current
state of its implementation, there are many important aspects of Haskell 98
semantics for which Plover either implements no rules or lacks effective strate-
gies. Plover does not currently support reasoning about monadic computations;
it has no rules for derived operators; it lacks either decision procedures or ax-
iomatic rules for even simple linear arithmetic; and it lacks effective strategies
for verifying properties of case expressions. Rules for verifying properties of
recursively-defined computations or recursive types have not yet been imple-
mented. It does not yet comprehend data declarations.

Nevertheless, Plover is able to verify some interesting properties of programs
defined using conditional expressions, tuples, non-recursive data types, function
application and explicit abstraction. It comprehends (non-recursive) definitions
including property definitions in P-logic.

3.2.1 Implementing a strategy-driven property verifier

The Plover implementation makes use of many of the techniques that have
been pioneered in general-purpose theorem-provers such as ACL2, PVS, HOL
and Isabelle. Internally, any theorem-prover analyzes terms representing log-
ical formulas and rewrites them to new terms according to the rules of the
logic that it implements. When viewed as a term-rewriting system, a theorem
prover for an expressive logic must implement a complex, non-confluent the-
ory. Typically, multiple choices of a next step are possible from a given term
configuration. Plover is organized as a composition of programmed strategies
for pattern-matching on terms, for term construction, and for selection among
available choices.

Rules of P-logic are expressed in a sequent-calculus style, which supports the
introduction of propositions either on the right or on the left of the turnstile
in the consequent of a rule. While this style of presentation is perhaps less
intuitive to the human than is natural-deduction style, with a duality between
introduction and elimination rules for each form of object-language term, it
allows greater flexibility in the design of an automated verifier.

Plover is implemented in Stratego, a higher-order strategy programming lan-
guage. In Stratego, strategies are first-class entities, just as functions are in
Haskell. This aspect of Stratego, together with a powerful library of strategies
for manipulating basic term structures, for memoization, and for tasks such as
capture-avoiding substitution in a lexically-scoped object term language, make
it an excellent vehicle for implementing a theorem prover.

Stratego itself is implemented on a run-time library of routines for manipulat-
ing terms with maximal sharing; this gives it greater efficiency than would be
gotten by building an implementation directly in a functional language such as
Standard ML or Haskell.

12



3.2.2 Using Plover

The easiest way to invoke Plover from the Programatica tools environment is to
create a certificate that names a property assertion embedded in a Programatica
module, declaring the certificate to have the Plover type. This will indicate
to the tool suite that Plover should be invoked when the certificate is to be
validated. At that time, the Programatica tools will furnish as data the slice
of the Programatica code on which the assertion depends (Section 2.4). The
whole sequence of linked operations needed to validate a certificate is launched
by clicking the Validate button in the certificate information window displayed
by the pfebrowser tool.

As a caveat, one must realize that Plover (like PVS and ACL2) is an ad hoc
theorem prover. The strategies that it employs (including its encoding of logical
inference rules) are simply computer programs, and they may contain errors.
Potentially, greater assurance may be obtained from a principled theorem prover,
such as Isabelle or Coq, that interprets proof rules in a strong type theory that
accepts only sound reasoning steps. However, there is a price to be paid for
stringent commitment to principle. It becomes impossible to take “shortcuts”
in proof construction; every proof step must be justified by evidence.

Plover relies for its claim to sound reasoning upon external proof of the sound-
ness of rules of P-logic, and upon rigorous testing to provide evidence that the
Plover implementation has not compromised soundness by an unfortunate pro-
gramming error. (Programming errors might also compromise completeness,
but since that property is never claimed, this is not a fundamental problem.)

4 Implementation Notes

Not surprisingly, our implementation has a lot in common with a Haskell com-
piler front-end and is likely to be reusable in many contexts outside the Progra-
matica project. For example, it has already been used in the refactoring project
at the University of Kent [25].

Our tools are implemented in Haskell, including the browser, which uses Fudgets
[4] for the user interface. Amongst other things, our implementation contains
an abstract syntax; a lexer and a parser; a pretty printer; some static analyses,
including inter-module name resolution; some program transformations; a type
checker and definition-level dependency tracking.

Some parts—the abstract syntax, the parser and the pretty printer—were in-
herited from another source [19] and modified, while most other parts were
written from scratch. Some parts—the lexer [11] and the module system [8]—
are implemented in pure Haskell 98 and can serve as reference implementations,
while others make use of type system extensions, in particular multi-parameter
classes with functional dependencies [14]. Together with a two-level approach

13



to the abstract syntax [22] and other design choices, this makes the code more
modular and reusable, but perhaps also too complicated to serve as a reference
implementation of Haskell.

The fact that the first pass of our lexer preserves white space and comments
made it easy to implement the HTML renderer. The modular structure of the
lexer also allowed us to quickly create a simple tool that someone asked for on
the Haskell mailing list: a program that removes comments and blank lines from
Haskell code [12].

While implemented from scratch, key design choices in the type checker were
influenced by the simplicity of Typing Haskell in Haskell [15], the efficiency of
the type checkers in HBC and NHC, and the constraint based approach used
in one of Johan Nordlander’s type checkers for O’Haskell [20]. It performs the
dictionary translation and inserts enough type annotations to make the output
suitable for translation to an explicitly typed language like Structured Type
Theory or System F.

5 Further Information and Availability

More information on the Programatica Project is available from our web pages
[21]. Preliminary versions of the tools and user documentation can be down-
loaded from [23].

References

[1] Andreas Abel. foetus – Termination Checker for Simple Functional Pro-
grams. www.tcs.informatik.uni-muenchen.de/~abel/foetus/, 1998.
Programming Lab Report.

[2] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley, 1999.

[3] Ana Bove. General Recursion in Type Theory. PhD thesis, Department
of Computer Science and Engineering, Chalmers University of Technol-
ogy, Gteborg, Sweden, 2002. www.cs.chalmers.se/~bove/Papers/phd_
thesis.ps.gz.

[4] Magnus Carlsson and Thomas Hallgren. Fudgets. www.cs.chalmers.se/
Fudgets/, 1993-2003.

[5] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for ran-
dom testing of haskell programs. In International Conference on Func-
tional Programming, pages 268–279. ACM, 2000. citeseer.nj.nec.com/
claessen99quickcheck.html.

14



[6] Thierry Coquand. Structured type theory. www.cs.chalmers.se/
~coquand/STT.ps.Z, June 1999. Preliminary version.

[7] Maarten de Mol. Sparkle. www.cs.kun.nl/Sparkle/, 2003.

[8] Iavor S. Diatchki, Mark P. Jones, and Thomas Hallgren. A Formal Spec-
ification for the Haskell 98 Module System. In Proceedings of the 2002
Haskell Workshop, Pittsburgh, USA, October 2002. www.cse.ogi.edu/
~diatchki/hsmod/.

[9] The Glasgow Haskell Compiler, 2004. www.haskell.org/ghc/.

[10] Thomas Hallgren. Home Page of the Proof Editor Alfa. //www.cs.
chalmers.se/~hallgren/Alfa/, 1996-2003.

[11] Thomas Hallgren. A Lexer for Haskell in Haskell. www.cse.ogi.edu/
~hallgren/Talks/LHiH, 2002.

[12] Thomas Hallgren. stripcomments. www.cse.ogi.edu/~hallgren/
stripcomments/, 2002.

[13] Hugs Online. www.haskell.org/hugs/, 2004.

[14] Mark P. Jones. Type Classes with Functional Dependencies. In Proceedings
of the 9th European Symposium on Programming, ESOP 2000, number
1782 in LNCS, Berlin, Germany, March 2000. Springer-Verlag.

[15] M.P. Jones. Typing Haskell in Haskell. In Proceedings of the 1999 Haskell
Workshop, Paris, France, September 1999. www.cse.ogi.edu/~mpj/thih/.

[16] Simon Peyton Jones, editor. Haskell 98 Language and Libraries, The Re-
vised Report. Cambridge University Press, April 2003. ISBN 0521826144,
www.haskell.org/definition/.

[17] Richard B. Kieburtz. P-logic: property verification for Haskell pro-
grams. //www.cse.ogi.edu/PacSoft/projects/programatica/papers.
htm, February 2002.

[18] Simon Marlow. Haddock. www.haskell.org/haddock/, 2003.

[19] Simon Marlow et al. The hssource library. Distributed with GHC [9].

[20] Johan Nordlander. O’haskell. www.cs.chalmers.se/~nordland/
ohaskell/, 2001.

[21] The Programatica Project home page. www.cse.ogi.edu/PacSoft/
projects/programatica/, 2002.

[22] Tim Sheard. Generic unification via two-level types and parameterized
modules. In International Conference on Functional Programming, pages
86–97, 2001. citeseer.nj.nec.com/451401.html.

15



[23] The Programatica Team. Programatica Tools. www.cse.ogi.edu/
~hallgren/Programatica/download/, August 2003.

[24] The Programatica Team. Programatica Tools for Certifiable, Auditable De-
velopment of High-assurance Systems in Haskell. In Proceedings of the High
Confidence Software and Systems Conference. National Security Agency,
April 2003. Available via [21].

[25] Simon Thompson, Claus Reinke, et al. Refactoring Functional Programs.
www.cs.kent.ac.uk/projects/refactor-fp/, 2003.

16


